摘要 音乐共同创造旨在使人类和计算机合作创作音乐。作为计算音乐学领域的 MIR 团队,我们在创作“2020 年 AI 歌曲大赛”参赛作品时尝试了共同创造。人工智能被用来独立生成歌曲的结构、和声、歌词和旋律,并作为人类作曲的基础。从创意和技术的角度来看,这都是一个挑战:在很短的时间内,团队必须调整自己的简单模型或尝试现有模型,以完成一项相关但仍然不熟悉的任务,即通过 AI 生成音乐。我们提出的歌曲名为“I Keep Counting”。我们公开详细介绍了歌曲创作、编曲和制作的过程。这次经历提出了许多关于创造力和机器之间关系的问题,无论是在音乐分析和生成方面,还是在 AI 在协助作曲家工作方面可以发挥的作用方面。我们尝试将人工智能作为自动化,使作曲的某些部分机械化,尤其是将人工智能作为建议来培养作曲家的创造力,这要归功于令人惊讶的歌词、不寻常的部分连续性和意想不到的和弦进展。因此,处理这些材料可以激发人类的创造力。
[1] Hern A. (2022)。人工智能机器人 ChatGPT 以论文写作技巧和可用性震惊学术界。卫报。取自:https://www.theguardian.com/technology/2022/dec/04/ai-bot-chatgpt-stuns-academics-with-essay-writing-skills-and-usability [2] GPT-3。 (2020)。这篇文章是由机器人写的。你害怕了吗,人类?卫报。取自:https://www.theguardian.com/commentisfree/2020/sep/08/robot-wrote-this-article-gpt-3 [3] Le TT。 (2023)。利用人工智能文本生成支持学术写作的初步示例“人类与他们的创造物交朋友——关于人与人工智能关系的一些注释”。OSF 预印本。摘自:https://osf.io/bsxey/ [4] Vuong QH, Napier NK。(2015 年)。文化适应与全球心智海绵:一个新兴市场的视角。国际跨文化关系杂志,49,354-367。https://www.sciencedirect.com/science/article/abs/pii/S0147176715000826 [5] Vuong QH。(2023 年)。心智海绵理论。柏林:De Gruyter。https://books.google.com.vn/books?id=OSiGEAAAQBAJ [6] Vuong QH 等人。(2018 年)。文化可加性:从民间故事中儒、佛、道三教互动中获得的行为洞察。 Palgrave Communications, 4, 143。https://www.nature.com/articles/s41599-018-0189-2 [7] Nguyen MH 等人(2022 年)。贝叶斯 Mindsponge 框架分析简介:一种用于社会和心理研究的创新方法。MethodsX, 9, 101808。https://www.sciencedirect.com/science/article/pii/S2215016122001881
从细胞中提取 DNA 是分子生物学的一个基本过程,为各种科学研究和应用奠定了基础。本实验报告概述了使用常见实验室材料从香蕉细胞中分离 DNA 的分步过程。通过这个实验,我们旨在展示 DNA 提取的实用方面,同时强调这项基本技术所依据的生物学原理。本实验的主要目标是通过从香蕉细胞中分离 DNA 来直观地观察 DNA,从而了解 DNA 提取背后的基本方法。该过程涉及几个关键步骤:细胞裂解、膜破坏和 DNA 沉淀。首先,用刀将新鲜香蕉切成小块。然后将香蕉片放入研钵中用水捣碎,直到形成浆状。通过将 10 毫升 Trix 与 20 毫升水混合,制备洗涤剂溶液 (Trix),确保气泡形成最少。将捣碎的香蕉混合物和洗涤剂溶液混合并充分混合。将所得混合物通过双层粗棉布过滤到试管中,使用漏斗收集滤液。将冰冷的异丙醇(20-25 毫升)小心地加入装有滤液的试管中,保持轻微倾斜以尽量减少混合。将试管静置 3-5 分钟,在此期间沉淀的 DNA 呈现为管中上升的浑浊白色物质。这个实验提供了 DNA 分离的切实演示,展示了香蕉细胞中可见的 DNA 沉淀。使用洗涤剂和盐进行细胞裂解,结合酒精进行 DNA 沉淀,对于各种生物技术和法医应用(如基因工程和 DNA 指纹识别)至关重要。该过程依赖于分离纯 DNA 以进行进一步分析。在高倍显微镜下,DNA 呈现为扭曲的梯子形状。它包含基因,这些基因掌握着我们身体发育和功能的指令。基因产生执行大多数身体任务的蛋白质。基因变异(称为等位基因)影响头发颜色、眼睛颜色和耳垂形状等特征。这些指令被包装在细胞内,使其太小而无法正常看到或触摸。但是,由于 DNA 存在于每个细胞中,因此可以从生物体中提取大量 DNA。 在这种情况下,我们将使用家用产品从香蕉中提取 DNA。 材料: * 1/2 根去皮的熟香蕉 * 1/2 杯热水 * 1 茶匙盐 * 1/2 茶匙洗洁精 * 可重新密封的拉链袋(夸脱大小) * 提前放在冰箱中的极冷外用酒精(异丙醇) * 咖啡过滤器 * 窄玻璃杯 * 木制搅拌器 分步说明: 1. 将可重新密封的袋子中的香蕉捣碎,直到它像布丁一样。 2. 将热水和盐混合,然后将溶液倒入袋中。 3. 轻轻挤压并混合内容物 30-45 秒。 4.加入洗洁精,轻轻搅拌以避免产生过多泡沫。5. 将咖啡滤纸放在透明玻璃杯中,将杯口固定在杯口周围。6. 将混合物倒入滤纸中,静置直至所有液体滴入杯中。7. 取出并丢弃用过的咖啡滤纸。8. 慢慢地将冷酒精倒入杯边,在香蕉混合物顶部形成 2.5-5 厘米厚的一层。9. 等待八分钟,观察酒精层中形成的气泡和浑浊物质。10. 用木制搅拌器收集浑浊的 DNA 碎片,旋转搅拌器使它们聚集在一起。从香蕉搅拌器中取出的看起来像云的东西实际上是 DNA!有教师和学生包。最近的实验可以通过认识到挤压香蕉可以分解细胞并有助于破坏细胞壁来理解,但为什么要添加其他成分?我们是如何进入细胞并让 DNA 粘在一起的?让我们来思考一下与香蕉混合的三种关键物质:盐水——在添加任何其他物质之前,先将香蕉在盐水中捣碎。这一步是为添加洗洁精做准备,洗洁精有助于释放 DNA。一旦 DNA 被释放,这种盐将帮助 DNA 链粘在一起,形成足够大的团块,以便于观察。洗洁精——洗洁精可以分解将细胞结合在一起的膜,这些膜由脂肪和油等脂质组成。它通过将这些油腻的分子彼此分离来“去除油脂”。加入洗洁精后,它会分解细胞膜并释放 DNA。酒精——DNA 团块可溶于某些液体,但不溶于酒精,因此添加酒精有助于 DNA 团块的形成。图片来源:Ralph Daily 通过 Wikimedia Commons 提供的香蕉和草莓图片。这种盐可以帮助DNA链粘在一起,形成足够大的团块,以便于观察。洗洁精——洗洁精可以分解将细胞结合在一起的膜,这些膜由脂肪和油等脂质组成。它通过将这些油腻的分子彼此分离来“去除油脂”。加入洗洁精后,它会分解细胞膜并释放DNA。酒精——DNA团块可溶于某些液体,但不溶于酒精,因此加入酒精有助于DNA团块的形成。图片来源:Ralph Daily,来自 Wikimedia Commons 的香蕉和草莓图片。这种盐可以帮助DNA链粘在一起,形成足够大的团块,以便于观察。洗洁精——洗洁精可以分解将细胞结合在一起的膜,这些膜由脂肪和油等脂质组成。它通过将这些油腻的分子彼此分离来“去除油脂”。加入洗洁精后,它会分解细胞膜并释放DNA。酒精——DNA团块可溶于某些液体,但不溶于酒精,因此加入酒精有助于DNA团块的形成。图片来源:Ralph Daily,来自 Wikimedia Commons 的香蕉和草莓图片。
基础物种提供栖息地并修改对其他物种的资源的可用性。在自然界中,混合物中可能发生多个基础物种,但关于它们的相互作用如何影响相关物种的社区组装知之甚少。地层为各种相关生物提供结构栖息地和资源,从而充当基础。在这项研究中,我们使用垫形成的地衣及其相关的微肢体作为微型生态系统来研究基础物种多样性与较高营养水平的丰度和功能多样性之间的潜力协同作用。我们创建了地衣斑块,具有多达四种物种的单一培养和混合物,并提取了肌曲板(鉴定为物种水平),Oribatida,Mesostigmata,假镜,假镜和Araneae和Araneae在106天后在天然lichen垫子内孵化后106天后与Tullgren仪器一起使用Tullgren。我们发现不同的地衣物种支持不同的节肢动物丰度。在总共55种地衣混合物和节肢动物组中,我们发现了对节肢动物丰度的非加addive,协同作用,尽管具有较小的5型混合物会导致协同作用,导致协同作用在Arthropod组方面有所不同。此外,对于较低营养水平的节肢动物组,对节肢动物的伴奏的协同作用更为常见。地衣混合物的功能多样性解释了肌曲板丰度中的模式,但在相反的方向上,因为在功能相似的地衣混合物中,协同响应更加频繁。最后,我们发现地衣混合物身份或多样性对Collembola社区的功能多样性几乎没有影响。当应用于大规模生态系统时,我们的结果表明,了解共存的基础物种之间的相互作用并确定那些驱动基础物种对消费者生物群体的协同作用的物种,可能对生物多样性保护和恢复工作至关重要。
空间辐射分析实验 (ESRA) 是洛斯阿拉莫斯国家实验室建造的最新演示和验证任务,重点是测试下一代等离子体和高能粒子传感器。ESRA 有效载荷的主要动机是尽量减少尺寸、重量、功率和成本,同时仍提供必要的任务数据。ESRA 将通过测试和在轨操作来展示这些新仪器,以提高其技术就绪水平,从而支持技术和任务目标的发展。该项目将利用商用现成的 CubeSat 总线以及商用卫星地面网络来降低与传统 DemVal 任务相关的成本和时间表。该系统将与国防部空间测试计划共乘发射,插入地球同步转移轨道,并允许观测地球辐射带。 ESRA 任务由两个科学有效载荷和多个子系统组成:宽视场等离子体光谱仪、高能带电粒子望远镜、高压电源、有效载荷处理器、飞行软件架构和分布式处理器模块。ESRA CubeSat 将测量 GTO 环境中的等离子体和高能带电粒子群,其中离子的能量范围从 ~100 eV 到 ~1000 MeV,电子的能量范围从 100 keV 到 20 MeV。
●遥感和建模目标:通过验证和改进北极中的遥感算法和模型参数化,增强了北极海冰,云和气溶胶的长期空间监测和预测能力。
太空行业的新贵正在将数千颗卫星部署到全球互联网服务上。这些计划有望在覆盖范围和延迟方面进行大量改进,并可能从根本上改变互联网。但是,如果此转换扩展到网络过渡到新型的计算服务,该怎么办?,如果每个卫星(除了用作网络路由器)外,还提供类似云的计算,使新的星座不仅使全球互联网服务提供商,但与此同时,还提供了一种新的云提供商,提供“计算您需要的地方”的新品种。我们在定性和定量上检查了这种轨道计算的机会和挑战。几个应用程序可以从中受益,包括内容分布和边缘库;多用户游戏,共同侵入和协作音乐;和处理空间数据。将计算硬件添加到卫星上似乎并不是在重量,体积和空间硬化方面都不是令人难以置信的,但是所需的功率抽取可能是很大的。另一个挑战源于低地球轨道的动态:一个特定的卫星只能在一次地面站看到几分钟,因此需要在管理状态应用程序时进行护理。我们对这些权衡的探索表明,这个“古怪”的主张不应随便予以驳回,并且可能值得研究社区的更深入地参与。
9。返回主窗口,滚动到接下来的三个数据部分,然后在第一个问题结束后记录的数据(EP1),第二个问题(P2)以及第二个问题结束后重复步骤2至6。在解决第二个问题期间解决了第一个问题后,αEEG节奏应恢复,在解决第二个问题时消失,并在解决第二个问题后重新出现。如前所述,将此数据输入期刊和表PP-1-L2。
摘要 - 本文介绍了负责在Bose-Einstein冷凝物和冷原子实验室(BECCAL)任务中设计和执行实验的软件,这是一项具有超冷和凝结原子的实验。该软件由两个部分组成:实验控制软件和实验设计工具。第一个对应于有效负载上运行的软件,并且负责控制和执行实验,而后者是科学家使用的工具来创建实验定义,以后将上传到要执行的仪器。为了克服以如此复杂性开发软件的挑战,决定遵循一种模型驱动的开发方法。已经创建了几种特定领域的语言(DSL),以允许科学家以特定于领域的方式描述他们的实验。然后,这些描述由不同的口译员上传和执行。本文详细介绍了实验控制软件的体系结构以及组成它的不同模块,以及用于描述新实验的开发语言和工具。本文还讨论并评估了软件的某些重要方面,例如与类似任务中使用的其他方法相比,所选方法的弹性以及所选方法的优势和缺点。开发的软件也将用于MAIUS-2/3任务。