热电 (TE) 材料是当今极少数可持续且可行的能源解决方案之一。这种巨大的能量收集前景取决于识别/设计出比现有材料效率更高的材料。然而,由于材料的化学空间非常广阔,到目前为止,只有一小部分材料经过了实验和/或计算扫描。通过在主动学习框架中采用基于压缩感知的符号回归,我们不仅确定了材料成分中具有卓越 TE 性能的趋势,还预测并通过实验合成了几种性能极高的新型 TE 材料。其中,我们发现 Cu 0.45 Ag 0.55 GaTe 2 在 827 K 时具有高达 ~2.8 的实验性能系数,这是该领域的一项突破。所提出的方法证明了物理信息描述符在材料科学中的重要性和巨大潜力,特别是对于通常在良好控制条件下的实验中获得的相对较小的数据集。
抽象的消费者生成的评论在建立信任和促进数字平台上的交易方面起着决定性的作用。但是,先前的研究表明了各种问题,例如,只有少数提供评论,伪造评论和不确定的评论的消费者。我们在餐厅预订平台的背景下使用一个实验来研究不一致的评论对消费者交易决策期限的影响。在第二个实验中,我们研究了审查不一致的情况下的审查组件的相对重要性。利用双重过程理论和媒体丰富性理论,我们预测不一致的评论会导致消费者交易决策(H1)所需的更长的时间,并导致用户的交易决策主要基于定性组成部分(H2)。尽管我们没有找到不一致的餐厅评论对交易决策的持续时间不一致的一般支持,但我们发现证据表明,对于不一致的餐厅评论,定性组成部分的极性对于交易决策的持续时间和决策本身至关重要。
摘要背景:基因设计的嵌合抗原受体(CAR)T淋巴细胞是有希望的癌症治疗工具。目前批准了四种汽车T细胞药物,包括Tisagenlecleucel(Tisa-Cel)(Tisa-Cel)和Axibabtagene-Ciloleucel(AXI-CEL),所有靶标CD19都被批准用于治疗B细胞恶性肿瘤。流式细胞仪(FC)仍然是使用重组生物素化靶蛋白的单层CAR T细胞的标准。尽管如此,需要其他工具,而挑战是开发一种简单,相关,高度敏感,可重现和廉价的检测方法。分子工具可以满足这种需求,以特别监视长期持续的汽车T细胞。方法:基于2个实验性CAR T细胞构建体IL-1RAP和CS1,我们设计了2个定量数字液滴(DDPCR)PCR分析。通过针对4.1BB/CD3Z(28BBz)或28/CD3Z(28Z)结面积,我们证明PCR分析可以应用于经过批准的CD19 CAR T药物。28Z和28BBZ DDPCR分析允许确定每个单元格的平均矢量拷贝数(VCN)。我们确认VCN取决于感染的多样性,并证实了我们的实验性或GMP样IL-1RAP CAR T细胞的VCN是否满足了临床部门的要求(<5 VCN/细胞),类似于批准的AXI-CEL或TISA-CEL药物。结果:28BBz和28Z DDPCR测定法应用于2个肿瘤(急性髓样白血病(AML)或多发性骨髓瘤(MM)异种移植物人源化NSG小鼠模型,使我们能够量化早期膨胀(到注射后的T细胞30)。最后,循环汽车T有趣的是,在初始膨胀之后,当肿瘤挑战循环的CAR T细胞时,我们注意到了第二个膨胀阶段。对骨髓,脾脏和肺的研究表明,在先前注射白血病细胞系的小鼠中,在这些组织中散布更多的CAR T细胞。
先前的方法主要集中在适应性免疫系统上,即免疫系统的分支“记住”以前的威胁,并在再次遇到时发动了特定的攻击。人体还具有先天的免疫分支,长期以来,该分支被认为是免疫系统的一线通用攻击部门,没有能力记住事先袭击或在重新收录时做出不同的反应。
。cc-by-nc-nd 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他授予Biorxiv授予Biorxiv的许可,以永久显示预印本。它是制作
在间皮瘤发育实验模型中,早期事件包括双链RNA(DSRNA)中编辑水平的增加。我们假设内源性逆转录病毒(ERV)的表达有助于DSRNA形成和I型干扰素信号传导。与非肿瘤样品相比,肿瘤的 ERV和干扰素刺激的基因(ISG)表达明显更高。 12个肿瘤特异性ERV(“ Mesoerv1-12”)被鉴定出来并通过qPCR在小鼠组织中验证。 与间皮瘤细胞相比,小鼠胚胎成纤维细胞(MEF)的“ Mesoerv1-12”表达较低。 “ Mesoerv1-12”水平通过脱甲基化剂5-Aza-2' - 脱氧胞苷的处理显着提高,并伴随着DSRNA和ISGS的水平升高。 与MEF相比,间皮瘤细胞中的基底ISGS表达更高,并且通过阻断IFNAR1和沉默的MAVS,JAK抑制剂r梭替尼显着降低了。 “ Mesoerv7”启动子在5-Aza-CDR处理后,与假小鼠组织以及间皮瘤细胞以及MEF细胞和MEF相比,在石棉暴露的暴露中被脱甲基化。 这些观察结果发现了石棉诱导的间皮瘤的新颖方面,从而导致ERV表达因启动子去甲基化而引起,并且与DSRNA水平的增加和IFN型信号传导的激活相似。 这些特征对于早期诊断和治疗很重要。ERV和干扰素刺激的基因(ISG)表达明显更高。12个肿瘤特异性ERV(“ Mesoerv1-12”)被鉴定出来并通过qPCR在小鼠组织中验证。与间皮瘤细胞相比,小鼠胚胎成纤维细胞(MEF)的“ Mesoerv1-12”表达较低。“ Mesoerv1-12”水平通过脱甲基化剂5-Aza-2' - 脱氧胞苷的处理显着提高,并伴随着DSRNA和ISGS的水平升高。与MEF相比,间皮瘤细胞中的基底ISGS表达更高,并且通过阻断IFNAR1和沉默的MAVS,JAK抑制剂r梭替尼显着降低了。“ Mesoerv7”启动子在5-Aza-CDR处理后,与假小鼠组织以及间皮瘤细胞以及MEF细胞和MEF相比,在石棉暴露的暴露中被脱甲基化。这些观察结果发现了石棉诱导的间皮瘤的新颖方面,从而导致ERV表达因启动子去甲基化而引起,并且与DSRNA水平的增加和IFN型信号传导的激活相似。这些特征对于早期诊断和治疗很重要。
与轴突渗透性相关的参数 - 轴内水交换时间(𝜏I)可能是理解和治疗脱髓鞘病理(例如多发性硬化症)的重要生物标志物。di usion加权MRI(DW-MRI)对渗透性的变化敏感;但是,由于缺乏合并其的一般生物物理模型,因此该参数仍然难以捉摸。基于机器学习的计算模型可以可能用于估计此类参数。最近,第一次使用随机森林(RF)回归器的理论框架表明,这是一种有希望的渗透性估计方法。在这项研究中,我们采用了一种方法,并且在第一次实验中,通过与组织学直接进行比较,对其进行了实验研究,以脱髓鞘。
在过去的十年中,实验者已经证明了他们在量子镜中控制机械模式的令人印象深刻的能力,直到量子水平:现在有可能创建机械的fock状态,从不同的物体中纠缠机械模式,存储量子信息或将其从一个量子位转移到另一个量子位,并在当今的文献中发现的许多可能性。的确是量子,就像旋转或电磁自由度一样。,所有这些尤其被称为量子技术的新工程资源。,但除了这一功利主义方面,还有更多的东西:援引布拉金斯基和洞穴的原始讨论,其中量子振荡器被认为是经典场的量子检测器,即引力波,也是量子量的独特感应能力。研究主题是机械模式与之耦合的浴室,让它们在自然界中是已知或未知的。这封信是关于这种新的潜力的,它解决了随机热力学的问题,可能是量子版本,搜索最近在最近的理论中假定的基本基础(随机)领域,这些字体可以与波浪功能崩溃模型的类别相吻合,以及呈现出浓缩模型的更为开放的问题,以及在所有机制中都具有两种含义的对象,并且在两个机构中都具有两种方式)。但是,这些研究比使用几种量子力学模式要大得多:必须确定所有已知的浴缸,必须对实验进行实验,而“机械师”一词必须通过在适当的驱动式音调时进行实质性地进行实质性的能力来构成实质性的能力。