根据欧洲议会的指令(2010/63/eu)和针对科学目的的动物保护理事会的指令,附件III点3.1.a,新动物的引入应成为每个设施必须拥有的健康战略的一部分。在第3.7点,还要求设施必须为动物制定习惯计划。此外,委员会的建议2007年6月18日关于用于实验和其他科学目的的动物的适应和护理指南(2007/526/ec),一般部分,4.4指出,允许动物允许动物从运输压力中恢复到新的环境,并习惯新的环境,并习惯了新的环境和新的丈夫和护理习惯。根据委员会的建议,即使被认为身体健康,也必须进行适应时期。所需的时间量取决于动物所经历的东西。例如,与该国境内短期运输相比,长期的国际运输破坏了动物的昼夜节律,可能需要更长的适应期。
我们提出了一种参数方法 SemSim p,旨在测量数字资源的语义相似度。SemSim p 基于信息内容的概念,它利用参考本体和分类推理,包含对本体概念进行加权的不同方法。具体而言,可以通过考虑可用的数字资源或给定领域的参考本体的结构来计算权重。通过进行包括统计分析和专家判断评估的实验,针对文献中提出的概念集比较方法,对 SemSim p 进行了评估。为了实现可靠的评估,我们使用了基于计算机协会数字图书馆 (ACM) 的真实大型数据集,以及源自 ACM 计算分类系统 (ACM-CCS) 的参考本体。对于每种方法,我们都考虑了两个指标。第一个涉及从 ACM Transactions on Information Systems 期刊中选出的某些专题的论文之间相似性的置信度,第二个涉及与人类判断的 Pearson 相关性。结果表明,SemSim p 的其中一种配置优于其他评估方法。在物理学领域进行的附加实验表明,总体而言,SemSim p 比其他相似性方法提供更好的结果。
AI 算法在 SE 研究和实践中的使用频率越来越高。此类算法通常使用来自 SE 领域之外的数据进行委托和认证。我们是否可以假设此类算法可以“现成”使用(即无需修改)?换句话说,SE 问题是否有特殊之处可以表明使用 AI 工具的不同且更好的方法?为了回答这些问题,本文报告了使用 TimeLIME 的实验,TimeLIME 是 KDD'16 中 LIME 解释算法的变体。LIME 可以就如何更改静态代码属性以减少下一个软件版本中的缺陷数量提供建议。该版本的 LIME 使用内部加权工具来决定在这些建议中包含/排除哪些属性。TimeLIME 使用以下 SE 知识改进了该加权方案:软件以版本形式发布;对软件的不合理更改是以前版本中从未更改过的内容;因此最好使用合理的更改,即在以前版本中具有先例的更改。通过将建议限制在经常更改的属性上,TimeLIME 可以 (a) 产生更好的缺陷原因解释和 (b) 关于如何修复错误代码的更好建议。除了这些关于缺陷减少和 TimeLIME 的具体结果之外,本文更普遍的观点是,我们的社区应该更加谨慎地使用现成的 AI 工具,而无需首先应用 SE 知识。如此处所示,应用这些知识可能并不复杂。此外,一旦应用了 SE 知识,就可以显著改善系统。
推荐引用 推荐引用 Pavlov, Y., Mushtaq, F., Adamian, N., Appelhoff, S., Arvaneh, M., Benwell, C., Beste, C., Bland, A., Bradford, D., Bublatzky, F., Busch, N., Clayson, P., Cruse, D., Czeszumski, A., Dreber, A., Dumas, G., Ehinger, B., Ganis, G., He, X., Hinojosa, J., Huber-Huber, C., Inzlicht, M., Jack, B., Johannesson, M., Jones, R., Kalenkovich, E., Kaltwasser, L., Karimi-Rouzbahani, H., Keil, A., & König, P. (2021) '#EEGManyLabs: Investigating the replicaability of influence EEG 实验”,Cortex,。可从以下网址获取:10.1016/j.cortex.2021.03.013 本文由 PEARL 健康学院免费开放获取。它已被 PEARL 授权管理员接受纳入心理学学院。如需更多信息,请联系 openresearch@plymouth.ac.uk。
摘要 — 思维实验是逻辑推理与讲故事的结合,它催化了量子科学和技术的进步。薛定谔的著名猫让量子科学进入公众视野,而德意志的思维实验则测试了多重世界和哥本哈根诠释,这涉及了量子计算机的首次构想。我将展示如何使用量子电路呈现思维实验来揭开明显的量子悖论的神秘面纱,并为学习者提供有趣、概念上重要的活动,让他们自己在近期的量子设备上实现自己。此外,我将解释如何将思维实验用作量子的初步介绍,并概述一个基于“量子炸弹测试仪”的研讨会,面向 11 岁以上的学生。本文借鉴了我在牛津开发和举办量子计算研讨会的经验,以及与 IBM Quantum 一起创建量子悖论内容系列(包括视频、博客和代码教程)的经验。索引术语 — 思维实验、量子电路、量子计算研讨会
Magan Mohagag 1*,Luca Mazzarella 1, ,阿尔伯特·鲁拉10号,沃尔夫冈·P。哪个10,Nan 1,Aileen ZhaiMagan Mohagag 1*,Luca Mazzarella 1, ,阿尔伯特·鲁拉10号,沃尔夫冈·P。哪个10,Nan 1,Aileen Zhai
PyBaMM 包含一个可互换模型库,允许用户测试不同的方法。没有用于交换电池数据处理方法的等效方法,导致研究人员的工作重复。因此,需要一个开源数据处理包,研究人员可以在一个框架内开发新的分析工具。PyProBE 的分析模块编写为模块化和直观的,具有一致的数据结构和内置的 Pydantic 数据验证(Colvin 等人,2024 年)。随着新方法的开发,可以添加它们并立即与现有方法进行比较。
设计。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>2 exp.arr。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>2 FDR内部内部。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>3 fdr.guii。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>3 fdr.ma。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 4 div>3 fdr.ma。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>4 div>
摘要:我们考虑了相对论潮汐对时钟比较实验频率偏移的影响。在潮汐、轴对称和旋转的地球引力场中,推导出频率偏移和时间传递的相对论公式。借助描述固体地球潮汐响应的洛夫数,我们建立了地面时钟比较实验的潮汐效应与重力仪的局部重力潮汐之间的数学联系,这反过来又为我们提供了一种利用局部重力潮汐数据消除潮汐对时钟比较影响的方法。此外,我们开发了一种受扰开普勒轨道的方法来确定太空任务时钟比较的相对论效应,与传统的未受扰开普勒轨道方法相比,该方法可以进行更精确的计算。利用这种摄动方法,可以给出由于潮汐力、地球扁率等影响而引起的轨道变化对相对论效应的摄动。另外,作为结果的应用,我们模拟了地面时钟比较中频移的潮汐效应,并对天琴任务和 GPS 给出了一些估计。
给定一个图重写系统,如果图 G 具有图重写的左模式非冲突匹配的非空最大集合,使得在并行应用重写之后,我们得到一个与 G 同构的图,则图 G 为奎因图。此类图表现出新陈代谢,它们可以繁殖,也可以消亡,当通过随机重写算法减少时。这些是使用 chemlambda、lambda 演算或交互组合器的人工化学实验页面的介绍性说明,可从入口页面 chemlambda.github.io [ 13 ] 获得。实验被捆绑成页面,所有页面都基于程序库、包含数百个图表的数据库以及大约 150 页文本注释的数据库和超过 200 个动画的集合,其中大多数可以通过程序实时重做。这些实验中有其他贡献者的公共存储库链接,其中包含这些程序的 python、haskell、awk 或 javascript 版本。