征文:教育和教育研究中的人工智能国际研讨会 (AIEER) AIEER 2024 教育和教育研究中的人工智能国际研讨会是第 27 届欧洲人工智能会议 ECAI 2024 [https://www.ecai2024.eu/] 的一部分。本次研讨会定于 2024 年 10 月 19 日至 20 日星期六和星期日举行。 研讨会范围 本次研讨会有两个不同的重点,旨在更广泛地面向教育人工智能领域。 第 1 部分。由社会科学主导的讨论,讨论人工智能应用可能有助于解决的教育中的实际问题。这包括教育和教学人工智能的研究,也包括社会科学、经济学和人文学科,包括所有学科,如教育和教学实际行动、以教育需求为重点的劳动力市场研究、教育史和相关教育文化遗产,以及决策和行为科学观点的信息预测。一方面,我们关注人工智能、教育和社会之间的联系。这包括定量和定性研究、分析教育和劳动力市场数据的数据科学方法、推荐系统的人工智能方法以及数字化学习。另一方面,我们关注如何使用人工智能来突破该领域的界限。这包括开发新方法(包括使用人工智能的方法)、寻找和提供可访问的新数据源、丰富数据等等。在这两种情况下,不同观点之间的沟通和相互理解至关重要,这也是本次研讨会的目标之一。更广泛地说,我们感兴趣的是人工智能方法如何影响教育的所有领域以及企业和劳动力市场。这包括从小学到高等教育的所有教育部门如何受到人工智能方法的影响和对其作出反应的方法。用人工智能方法设计数字化未来为教育提出了几个问题:在最广泛的层面上,立法和规范问题;在公司层面,关于投资决策以及如何保持生产力和劳动力的问题;在个人层面,关于资格以及哪些技能需要应用和可能重新学习的问题。因此,技能和资格是教育和教育研究中人工智能的核心。第 2 部分。关于可以开发哪些人工智能应用程序(以及如何开发)来解决第 1 部分提出的问题的(计算机科学主导)讨论。使用基于人工智能的系统来支持教学或学习已经发展了 40 多年,但近年来,由于 COVID-19 大流行期间电子学习工具的使用增加以及最近生成人工智能的爆炸式增长,其增长显着增加。我们正处于这一领域发展的关键时刻,人工智能专家和教育专家必须携手合作,以在教学过程中最佳地利用这项技术。本次研讨会旨在为展示新提案和反思这一具有如此社会意义的领域的最新技术创造空间。在第一部分中,我们特别关注人工智能的技术方面,重点关注用于内容创建(生成式人工智能)、学生分析(机器学习)、学习分析或教师可解释的人工智能方法的具体技术
国家或居住1专家Abdelali Kaaouachi教授11.1数学摩洛哥2专家教授协助。阿德里安·斯坦(Adrian Stan)12.3罗马尼亚牙科医学3专家协会。Prof. Agnieszka Dardzińska-Głębocka 05.4, 05.5, 06.0, 06.9, 11.0Vocational and Technical Education, APoland 4 Expert Prof. Dr. Ahmad Zargari 06 Industrial Technology, Engineering TecUSA 5 Expert Prof. Dr. Alan Brickwood 03 Furniture and interior design, Fashion DUnited Kingdom 6 Expert Prof. Dr. Alen Host 04, 14?外贸政策,区域综合阿特亚7学生专家博士。Cand Alena Lohrmann 06.0,06.2,06.9工程,技术电气工程俄罗斯8专家Alexandre Tugui 04,04.3,14 Information Technologies,会计,罗马尼亚9学生专家博士。Cand Alicia Presencio Herrero学生传播,新闻,广告10专家Phd Anastastios Dagiuklas 11计算机科学,计算机工程Engineerigreece 11 Expert Assoc。Prof. Anca Greere 09 Philology, English Language, Quality ARomania 12 Expert PhD Anca Prisacariu 05 Education Management, Education LeaRomania 13 Expert Prof. Dr. Andrea Serban 04, 14 Economics, Business &Administration Romania 14 Expert Prof. Dr. Andreas Mehrle 06.1 Mechatronics, Mechanical Engineering Austria 15 Expert Prof. Dr. Andrew Goodspeed 09 English Literature;爱尔兰文学;阿米尔兰16专家协会。Prof. Andriana Surleva 13.3 Chemistry (Analytical Chemistry) Bulgaria 17 Expert Prof. Dr. Anida Kisi 09 French Language Albania 18 Expert PhD Anna Bara 08.3, 10, 14.6 History, Law, International Relations, DAustria 19 Expert PhD Anna Helesh 05, 15, QA Accreditation and Evaluation, Qualitty Ukraine 20 Expert Prof.协助。Anto Cartolovni 12医学和健康科学(医学克罗地亚21专家AntonioSánchezPozo博士教授AntonioSánchezPozo13.6生物科学,健康科学,NSPAIN,NSPAIN 22专家Phd Arlind Farizi 09 Philogology 09 Philogology,Plyology,文学北部MACEDONIA 23 MACEDONIA 23 MACEDONIA 23 EXPECTArmand Faganel教授04旅游,市场,管理,斯洛文尼亚
DGA 飞行测试中心拥有欧洲独一无二的极高水平的专业知识和测试资源,负责在所有飞机交付给军队之前对其进行测试和评估。该中心还参与未来军用航空装备的设计,如未来空战系统(SCAF)、轻型联合直升机(HIL)和未来的阵风标准。
医学教育是一个复杂而艰巨的过程,要求学生在临床前和临床领域获得大量的知识和技能 [1]。近年来,人工智能 (AI) 已被提出作为提高医学教育成果的潜在解决方案。AI 在医学教育中的一种应用是使用智能辅导系统,该系统为个别学生提供个性化的反馈和指导 [2]。本研究的目的是探索 AI 辅导系统在学习医学临床前和临床领域(特别是在药理学领域)中的应用。智能辅导系统在医学教育中的整合具有多种优势 [3]。这些系统支持个性化辅导,系统可以评估学生的知识水平并确定需要进一步强化的领域 [4]。当学生参与建议的活动时,可以调整难度级别,并根据他们的优势和劣势提供指导。这些系统被集成到学习管理系统中,学习管理系统已经历了显著的增长。
课程目标 1.了解人工智能和专家系统的基本概念。2. 提供人工智能所涉及的各种技术和工具的知识。单元 1 简介 简介:历史、人工智能的定义、人类认知过程的模拟、知识搜索权衡、存储知识、语义网络。建模的抽象视图、基础知识。计算逻辑、使用简单逻辑连接词分析复合语句、谓词逻辑、知识组织和操作、知识获取。单元 2 人工智能中的编程和逻辑 LISP 和其他编程语言 - LISP 简介、语法和数值函数、LISP 和 PROLOG 区别、输入输出和局部变量、交互和递归、属性列表和数组替代语言、形式化符号逻辑 - WFRS 的属性、非演绎推理方法。不一致和不确定性 - 真值维护系统、默认推理和封闭世界假设、模型和临时逻辑。单元 3 搜索方法和知识表示 模糊逻辑 - 概念、模糊逻辑简介(带示例)、概率推理、贝叶斯概率推理、Dempstor Shafer 理论、可能世界表示、Ad-Hoc 方法。结构知识:图形、框架和相关结构、面向对象表示 - 对象类、消息和方法、使用 OOPS 程序的模拟示例、OOP 语言。搜索和控制策略 - 概念、搜索问题、统一或 Blined 搜索、搜索 AND – OR 图。
摘要 哥德堡数字人文研究基础设施 (GRIDH) 参与了各个人文领域的项目,这些项目利用并开发了结合“人工智能” (AI) 应用的研究工具和基础设施资源。这些应用包括自然语言处理、机器学习、计算机视觉、大型语言模型、图像识别算法、分类、聚类和深度学习。本文提出了“人文 AI”一词,以描述一种新兴的跨学科实践形式,该实践使用和开发基于 AI 的研究应用程序来回答人文研究问题及其纠缠不清的人文反思。我们创造这个术语是为了使其实践的认识论和物质特殊性以及其可供性使之成为可能的新知识形式变得隐晦和可见。本文介绍了 GRIDH 在“人文 AI”领域的项目及其开发的 AI 资源和应用。
神经科学的当前趋势是使用自然主义刺激,例如电影,课堂生物学或视频游戏,旨在在生态上有效的条件下了解大脑功能。自然主义刺激招募复杂和重叠的认知,情感和感觉脑过程。大脑振荡形成了此类过程的基本机制,此外,这些过程可以通过专业知识来修改。尽管大脑作为生物系统是高度非线性的,但通常通过线性方法分析人类皮质功能。这项研究应用了一种相对健壮的非线性方法,即Higuchi分形维度(HFD),将数学专家和新手的皮质功能分类为在脑电图实验室中解决长期且复杂的数学示范。脑成像数据是在自然主义刺激期间长期跨度收集的,可以应用数据驱动的分析。因此,我们还通过机器学习算法探讨了数学专业知识的神经标志。需要新颖的方法来分析自然主义数据,因为基于还原主义和简化研究设计的现实世界中脑功能的理论的表述既具有挑战性又可疑。数据驱动的智能方法可能有助于开发和测试有关复杂大脑功能的新理论。我们的结果阐明了HFD在复杂数学期间对数学专家和新手分析的不同神经签名,并将机器学习作为一种有前途的数据驱动方法,以了解专业知识和数学认知的大脑过程。
本出版物不构成或提供科学或医学建议、诊断或治疗。此信息基于帝斯曼-芬美意目前的知识,仅包含供企业间使用的科学技术信息。帝斯曼-芬美意不就信息的准确性、可靠性或完整性以及将获得的结果作出任何陈述或保证。您应自行决定是否使用此信息并承担风险。它并不免除您遵守所有适用法律法规以及尊重所有第三方权利的义务。本文中的任何内容均不免除您自行进行适用性测定和测试(包括成品稳定性测试)的责任。在向最终消费者进行标签或广告宣传时,还应考虑特定国家或地区的信息。本文件的内容如有更改,恕不另行通知。本手册中列出的所有商标均为帝斯曼-芬美意在瑞士和/或其他国家/地区的注册商标或商标。
Aural Strasbourg,5 Rue Henri Bergson,法国Strasbourg; B GP,法国南希洛林大学; C摩纳哥摩纳哥公主医院医学专业和肾脏科学系和肾脏病透析和摩纳哥摩纳哥的私人血液透析中心; D Aix Marseille University,法国马赛; E内分泌学,代谢疾病和营养部,AP-HM(Marseille的医院室外),法国Marseille; F法国旅行社的旅游大学; GIDEM,EA4245,Tours University of Tours; H国家组织全球,F-Crin Ini-Crct(心血管和肾脏临床tralists),法国旅游;我的私人医疗实践,法国贝桑森; J心脏病学系,INSERM,U 970,巴黎心血管 - PERCC研究中心;巴黎SorbonneCité大学,巴黎笛卡尔医学院; AP-HP,公共援助 - 巴黎,欧洲医院乔治·庞皮杜,法国巴黎; k肾脏科学系,二肌分析和移植;大学肾脏疾病中心;法国凯恩的凯恩大学医院;生物学家临床,私人医学实践,法国布尔斯