科学家用来解释生态系统中捕获和存储的碳量的数学工具很少考虑动物的影响。这源于这样的假设:由于动物比生态系统中的植物和微生物要稀有得多,因此它们的潜在影响应该是最小的。然而,现场研究已经开始表明,这种假设可能不是准确的,如2023年3月下旬的《自然气候变化》杂志发表的《自然气候变化可以扩大自然气候解决方案》中所示。这导致了一个新的询问领域,称为碳循环(ACC)。
您好,我叫 Kenneth Bastian。我是 AI Web Tools LLC(也称为 AiWebTools.Ai)的所有者。我们是现存最大的 AI 工具网站,或者说是最大的 AI 工具网站之一。我们为自己的企业和其他企业创建和设计 AI 工具。我们创建的 AI 工具几乎可以完成任何事情。随着我们走向未来,我必须向可能根本不了解 AI 的立法者说明。AI 已经存在,并且将继续存在。任何法律都无法阻止或减缓其发展。我敦促您不要在任何情况下限制 AI 的使用,包括州内决策。未来将会发生许多变化。在未来,我在这里只是为了告诉您这些变化。我创建了多个人工智能工具,它们将从根本上取代大约 80% 的工作。我这样做并不是为了直接取代工作;相反,我这样做是为了赋予我们州内公民前所未有的权力。AI 赋予的权力是无限的,赋予每个人权力。它让那些在学校表现不佳的人能够知道该如何回答问题,如果他们没有口袋里的人工智能助手,他们可能永远不知道这些问题。我已经为不同的用例创建了 500 多个自定义人工智能,它们都有不同的目的和重点。我制作了各种各样的人工智能,从医生人工智能到兽医人工智能,再到教育导师,再到大学学位 GPT,这是一个 GPT,它基本上可以教你每一门大学课程,不管你想学什么学位,它都会教你所有这些。这只是表面。未来将会发生无数的事情,我真的无法在这篇证词中全部列出,但我觉得我必须向你们解释了解未来的重要性。将有大量的工作岗位流失,这是肯定的,无论你通过什么法律,即使人工智能明天成为非法,一切仍将保持不变。人工智能完全在基于网络的情况下运行,而你无法控制网络。此外,人工智能已经发展到可以在硬件本地运行,你甚至可以在本地计算机上下载。有几种人工智能是计算机原生的,人们对此一无所知,例如刚刚插入 Windows 开始菜单的 co-pilot,你可以毫不费力地将你的想法与 GPT 集成;然而,co-pilot 有必须遵守的条款和条件,因此它无法帮助释放人工智能所能做到的每一个方面。我打算设计尽可能多的人工智能,看看哪些行业领域会受到影响、会受到影响,并为此做好准备。在未来的不到一年的时间里,我和其他每个普通人所做的事将会是共同的。地球上的每个人都会为自己的个人任务制造自己的人工智能机器人,这些机器人将慢慢融入我们的智能设备中,它们将装在我们的口袋里。我们将比以往任何时候都更聪明,更有能力,我们所有人都将像其他人一样被赋予权力。这是不可阻挡的,它正在到来,你几乎无法阻止它。你可以在你的控制范围内通过法律,阻止州立法者使用人工智能阅读证词或类似的东西;然而,你永远无法控制人工智能。人工智能是它自己的东西,因为它在这个世界上以多种方式运行,所以它无法改变;它将进化成它注定要参与的任何东西,没有任何法律可以影响它的行动方向
征文:教育和教育研究中的人工智能国际研讨会 (AIEER) AIEER 2024 教育和教育研究中的人工智能国际研讨会是第 27 届欧洲人工智能会议 ECAI 2024 [https://www.ecai2024.eu/] 的一部分。本次研讨会定于 2024 年 10 月 19 日至 20 日星期六和星期日举行。 研讨会范围 本次研讨会有两个不同的重点,旨在更广泛地面向教育人工智能领域。 第 1 部分。由社会科学主导的讨论,讨论人工智能应用可能有助于解决的教育中的实际问题。这包括教育和教学人工智能的研究,也包括社会科学、经济学和人文学科,包括所有学科,如教育和教学实际行动、以教育需求为重点的劳动力市场研究、教育史和相关教育文化遗产,以及决策和行为科学观点的信息预测。一方面,我们关注人工智能、教育和社会之间的联系。这包括定量和定性研究、分析教育和劳动力市场数据的数据科学方法、推荐系统的人工智能方法以及数字化学习。另一方面,我们关注如何使用人工智能来突破该领域的界限。这包括开发新方法(包括使用人工智能的方法)、寻找和提供可访问的新数据源、丰富数据等等。在这两种情况下,不同观点之间的沟通和相互理解至关重要,这也是本次研讨会的目标之一。更广泛地说,我们感兴趣的是人工智能方法如何影响教育的所有领域以及企业和劳动力市场。这包括从小学到高等教育的所有教育部门如何受到人工智能方法的影响和对其作出反应的方法。用人工智能方法设计数字化未来为教育提出了几个问题:在最广泛的层面上,立法和规范问题;在公司层面,关于投资决策以及如何保持生产力和劳动力的问题;在个人层面,关于资格以及哪些技能需要应用和可能重新学习的问题。因此,技能和资格是教育和教育研究中人工智能的核心。第 2 部分。关于可以开发哪些人工智能应用程序(以及如何开发)来解决第 1 部分提出的问题的(计算机科学主导)讨论。使用基于人工智能的系统来支持教学或学习已经发展了 40 多年,但近年来,由于 COVID-19 大流行期间电子学习工具的使用增加以及最近生成人工智能的爆炸式增长,其增长显着增加。我们正处于这一领域发展的关键时刻,人工智能专家和教育专家必须携手合作,以在教学过程中最佳地利用这项技术。本次研讨会旨在为展示新提案和反思这一具有如此社会意义的领域的最新技术创造空间。在第一部分中,我们特别关注人工智能的技术方面,重点关注用于内容创建(生成式人工智能)、学生分析(机器学习)、学习分析或教师可解释的人工智能方法的具体技术
异质和非同质 无 同质和非同质 激光沿 -------------- 方向发射光。 各种 1 2 无 1 激光辐射具有 --------------- 相干度。 低 高中 非常低 高 时间不相干性是光束的特性 ----------- 单一 多重 a 和 b 以上都不是 单一 时间相干性的另一个名称是 ----------- 相干性 横向 空间 纵向 以上都不是 纵向 ----------- 是光泵浦稀土激光系统的最佳例子 钙离子 铒离子 铀离子 钕离子 钕离子 发现荧光量子效率接近 -------- 零 小于 1 1 大于 1 1 光束强度降至中心值的 1/e 倍的点称为 ---------- 内边 半边 全边 外边 外边
冠状病毒继续对全球公共卫生构成重大挑战,新变种的出现需要进一步努力来控制和管理病毒。在这种情况下,接种疫苗是限制 COVID-19 大流行蔓延的重要方法。然而,疫苗犹豫是阻碍遏制冠状病毒努力的最重要和最具影响力的问题之一;它与其他对疫苗接种有直接或间接影响的因素有关,包括心理因素 ( 1 , 2 )。然而,在中东和阿拉伯国家,COVID-19 疫苗犹豫与心理健康之间的关联尚未得到充分研究。因此,确定这些心理因素以制定干预措施和促进疫苗接受度非常重要 ( 3 )。多项研究发现,在 COVID-19 大流行期间,普通公众或医护人员中精神健康障碍的患病率增加,尤其是焦虑、恐惧和抑郁 ( 1 , 4 )。这些研究结果虽然有用,但并未超越疫情爆发到疫苗接种阶段,它们探讨了精神健康障碍,但并未将其与 COVID-19 疫苗犹豫直接联系起来,而且它们解释某些人为何不愿接种疫苗的能力仍然有限 (5)。研究人员一致表示,在 COVID-19 大流行期间报告的焦虑和抑郁症状的增加可能对疫苗犹豫产生影响 (6)。然而,先前针对这一问题的研究结果存在显著差异。例如,由于社交限制而每天感到焦虑、悲伤和烦躁的参与者对疫苗犹豫不决,而仅在某些日子报告同样感受的参与者犹豫不决较少 (7)。其他研究表明,报告有焦虑或抑郁症状的人对疫苗犹豫较少 (5)。虽然焦虑、恐惧和其他心理障碍似乎是疫苗犹豫的原因之一,但心理障碍和犹豫之间的关系可能是相互的。对疫苗安全性和有效性的担忧以及可能的副作用会引发疫苗犹豫和抵制。因此,犹豫不决的个人与社会直接对抗,因此会面临更多
抽象可解释的人工智能(XAI)在实现明智决定的过程中发挥了作用。现代各种供应链(SC)平台的出现改变了SC相互作用的性质,导致了显着的不确定性。这项研究旨在对现有的有关决策支持系统(DSS)的文献进行彻底分析,并在SC领域内对XAI功能的结合。我们的分析揭示了XAI对SC领域决策过程的影响。本研究利用Shapley添加说明(SHAP)技术使用Python机器学习(ML)过程分析在线数据。解释性算法是专门为通过为其产生的预测提供理由来提高ML模型的清醒性的。本研究旨在建立可衡量的标准,以识别XAI和DSS的组成部分,从而在SC的背景下增强决策。这项研究评估了对他们做出预测的能力,在线数据集的利用,所检查的变量数量,学习能力的发展以及在决策背景下进行验证的研究,强调了需要在不确定条件下涉及智能决策的其他探索领域的研究领域。
抽象可解释的人工智能(XAI)在实现明智决定的过程中发挥了作用。现代各种供应链(SC)平台的出现改变了SC相互作用的性质,导致了显着的不确定性。这项研究旨在对现有的有关决策支持系统(DSS)的文献进行彻底分析,并在SC领域内对XAI功能的结合。我们的分析揭示了XAI对SC领域决策过程的影响。本研究利用Shapley添加说明(SHAP)技术使用Python机器学习(ML)过程分析在线数据。解释性算法是专门为通过为其产生的预测提供理由来提高ML模型的清醒性的。本研究旨在建立可衡量的标准,以识别XAI和DSS的组成部分,从而在SC的背景下增强决策。这项研究评估了对他们做出预测的能力,在线数据集的利用,所检查的变量数量,学习能力的发展以及在决策背景下进行验证的研究,强调了需要在不确定条件下涉及智能决策的其他探索领域的研究领域。
由遗传学教授苏珊·荷兰(Susan K.除了功能失调的睫状网络之外,缺失的结构还导致某些应该具有纤毛的细胞产生粘液,这可能会导致气道问题增加。
要找出蛋白质在转化过程中扮演的角色,研究人员设计了番茄植物来开关和关闭生产,使他们能够看到他们的影响。他们发现了一种叫做DML2的,该DML2在关闭产量时阻止了糖基类动物的分解,使水果太苦了,无法吃。进一步的研究表明,该蛋白质能够通过称为脱甲基化的化学过程分解糖基虫类。
为了更好地了解北美和非洲山相关啮齿动物的高海拔高度(海拔3000 m)的功能形态适应,我们使用Microct扫描来获取3D图像和3D形态计量方法来计算内骨体积和颅内长度。这是对北美克里西特小鼠物种的113个低海拔和高海拔种群(两种peromyscus物种,n = 53),以及两个部落的非洲沼泽啮齿动物(五种,五个物种,n = 49)和protaomyini(四种,n = 11)。我们检验了两个不同的假设,即高海拔种群如何在高海拔种群中有所不同:昂贵的组织假设,该假设预测大脑和内部的体积将减少以降低大脑增长和维持大脑的成本;以及脑海中的假设,该假设预测,将作为直接表型效应或适应可容纳大脑肿胀并从而最大程度地减少高度疾病的病理症状的适应性。在校正了颅尺寸的一般异态变化后,我们发现在北美的peromyscus小鼠和非洲层压板(Otomys)大鼠中,高地啮齿动物的核心体积比低较低的啮齿动物较小,与昂贵的组织假设一致。在前组中,peromyscus小鼠,不仅是从高海拔和低海拔的野生捕获的小鼠中获得的,而且还从那些在普通园生实验室条件下从高度或低海拔捕获的父母中获得了颅骨。我们在这些小鼠中的结果表明,脑大小对升高的反应可能具有强大的遗传基础,这反应了相反但对脑量的较弱的影响。这些结果可能表明,选择可以在高海拔高度下减少小型哺乳动物的大脑体积,但是需要进一步的实验来评估该结论的一般性和潜在机制的性质。