自从抗PD1免疫检查点抑制剂(ICI)免疫疗法出现以来,皮肤黑色素瘤已经经历了一场真正的革命,随着可用的5年期间的生存期,可用的5年期间,可延长的效果,并避免了可抗化的临床临床对黑色素瘤患者的耐用临床益处。然而,几乎一半的患者对应治疗,对治疗的Orrelapsesoonerorlaterapter theinitialrespess。对这些失败的原因知之甚少。生物标志物的识别似乎是更好地理解这种抵抗力的必要条件。在这些生物标志物中,HLA-DR(MHC II的一个成分)和在包括黑色素瘤(未知原因)在内的某些肿瘤类型中的异常表达,似乎是一个有趣的标记。由跨学科的专家组制定的这项审查的目的是将目前关于HLA-DR表达在黑色素瘤中的潜在利益的文献库存为ICI结果的预测生物标志物。
结果:在这项研究中,用高光暴露和β-徘徊的酮醇酶的异源表达以时间依赖的方式研究了Reinhardtii中的类胡萝卜素代谢调节。结果表明,高光暴露(500μmol /m 2 /s)的应力对β-胡萝卜素的积累负调节。积极地诱导玉米黄质,晕辉语和甘氧蛋白的积累。并不断促进Zeaxanthin和canthaxanthin在C. reinhardtii中的积累。代谢组学分析表明,高光暴露应力促进了类胡萝卜素的生物合成,改善了与astaxanthin合成途径相关的中间体,并促进了β-胡萝卜素转化为下游物质。实施了几种策略,以改善Reinhardtii中的canthaxanthin的产生,以实现来自不同来源的β-芳香烯酮醇酶基因的过表达,包括强启动子,插入内含子和叶绿体传导肽。发现,在转化的过表达β-胡萝卜素酮醇酶的转化后,β-胡萝卜素,晕辉酮和canthaxanthin均显着增加。其中,在PH124-CRTO中发现了最高的canthaxanthin含量,这是
在斑马鱼中,Müller神经胶质在损伤,获得祖细胞特性并产生所有视网膜细胞类型时会发生增生反应(8)。大多数通过增生的müller神经胶质产生的细胞仍然是祖细胞,而少数细胞则分化为雏鸡retia中的特定神经元(9)。müller神经胶质可以在哺乳动物中被激活,但很少有人因受伤而增殖,并且不会补充损失的神经元(10)。损伤后哺乳动物中有限的müller细胞增殖可能是由于抑制性机制或有限的有丝分裂原理引起的。表征限制哺乳动物müller细胞增殖的机制可能会提供解锁哺乳动物休眠的再生潜力的线索(11)。müller神经胶质在人类视网膜损伤后可能会扩散,但没有人类视网膜神经元再生的证据。人类müller细胞(MIO系),从不同的后视网膜(12),Expressmüller和祖细胞标记中分离出来。生长因子刺激这些细胞表达有丝分裂后神经元标记(13,14)。FGF2是Müller增殖和重编程所涉及的因素之一(13,15)。没有任何损害,FGF2和胰岛素刺激Müller神经胶质,如雏鸡的神经毒性损伤所观察到的那样(15)。fgf2选择性地激活RAS/MAPK/ERK信号通路,该途径调节Müller增殖(16)。
1 Respucation of ResjudmentBioMédicen Red de Enfermedes Raras(Ciberer),西班牙巴塞罗那; 2大学庞贝·法布拉大学(UPF),西班牙巴塞罗那; 3西班牙巴塞罗那科学技术研究所(Bisti)基因组调节中心(CNAG-CRG)的Centro NacionaldeAnálisisGenómica(CNAG-CRG); 4 Isglobal,西班牙巴塞罗那; 5西班牙巴塞罗那巴塞罗那科学技术学院基因组监管中心(CRG); 6 CiberEpidemiologíay SaludPública(Ciberesp),西班牙巴塞罗那; 7医学基因组学集团,圣地亚哥大学,西班牙圣地亚哥·德·孔波斯特拉; 8英国布拉德福德的布拉德福德教学医院NHS基金会信托基金Bradford健康研究所; 9大学格勒诺布尔(Grenoble Alpes),Inserm,CNRS,环境流行病学团队,用于繁殖和呼吸遗产,法国格勒诺布尔; 10日环境科学系,立陶宛Kaunas Vytautas Magnus University; 11挪威挪威公共卫生学院环境卫生部;挪威; 12社会医学系,克里特岛克里特大学,希腊克里特岛; 13美国南加州大学凯克医学院预防医学系,美国洛杉矶,美国; 14 Medicine Genomics Group,Ciberer,Santiago de Compostela大学,西班牙圣地亚哥De Costela; 15加利西亚州基因组医学基金会,西班牙圣地亚哥·德·波多拉(Santiago de Costela); 16定量基因组医学实验室(QGENOMICS),西班牙巴塞罗那的埃斯普尔·德尔·洛布雷加; 17 Departoment de Biomedicine,DeNeurociències,巴塞罗那大学,巴塞罗那大学,西班牙
主要的开角青光眼(POAG)和婴儿芳香青光眼(IAG)分别是成人和婴儿视力丧失的重要贡献者。这两种指示都与小梁网(TM)的纤维化有关,该小梁网(TM)减弱了幽默流出,眼内压(IOP)和视网膜神经节细胞(RGC)死亡。转化生长因子β2(TGFβ2)与POAG和IAG中的间充质转变(EMT)有关。TGFβ2的主要调节剂是Decorin,这是一种蛋白聚糖,其表达在青光眼患者中的表达降低。在这项研究中,我们证明了使用腺相关病毒(AAV)载体AAV-IKV的鼠前腔高度感染,包括睫状体,角膜基质,TM和角膜神经。表达组成性活跃的TGFβ2(AAV-IKV-TGFβ2CS)的AAV-IKV导致小鼠中TM的纤维化,随后IOP和RGC死亡增加了TM的纤维化,对POAG和IAG的病理学特征进行了建模。从AAV-IKV载体(AAV-IKV-DECORIN)中表达了人类装饰蛋白,使AAV-IKV-TGFβ2CS注射的小鼠在AAV-IKV-TGFβ2CS中减弱了纤维化,IOP和RGC死亡,这表明AAV-IKV-DECORIN可能会分别用作POAG和IAG的治疗。最后,非人类灵长类动物中AAV-IKV-GFP载体的腔内注射导致角膜中GFP的表达而没有任何可见的毒性。
转座元素(TES)是寄生虫DNA序列,能够沿所有基因组的染色体移动和繁殖。可以通过靶向沉默表观遗传标记来控制它们,这可能会影响包括基因在内的相邻序列的Chro Matin结构。在这项研究中,我们使用了来自几个果蝇Melanogaster的卵巢样品和果蝇Simulans野生型菌株产生的转录组和表观基因组高吞吐量数据,以精细量化Te插入对基因RNA水平和组蛋白标记的影响(H3K9ME3和H3K9ME3和H3K4ME3)。我们的结果揭示了与梅拉·诺加斯特(D. Mela Nogaster)相比,TES对D. simulans中直源基因的表观遗传作用更强。同时,我们发现了D. mel Anogaster基因组中TE对基因H3K9me3的差异的较大贡献,这证明了Te数字周围的Te数与D. melanogaster中这种染色质标记的水平的更强相关性。总体而言,这项工作有助于理解TE在基因组中的物种特异性影响。它为TE提供的可观自然变异性提供了新的启示,这可能与适应性和进化潜力的对比有关。
“由于其显着优势,可以预期将来可以替代基于mRNA的DNA格式疗法的表达 - 就像可以预期合成的circrna替代当前的mRNA格式一样”
乳腺癌是女性最普遍的癌症之一,也是该国生长最快的癌症类型之一(1,2)。每年,成千上万的人得到毁灭性的消息,即他们患有乳腺癌,使其成为世界上最常见的恶性肿瘤之一(3,4)。根据数据,总共有2015万妇女被诊断为全球乳腺癌。在2020年在全球诊断出患有乳腺癌的2020万妇女中,大约有23,000名因疾病而丧生(5-7)。乳腺癌发生在世界上几乎每个国家,青春期后都会影响任何女性,并且其患病率随着年龄的增长而增加(8,9)。如果发现和早期治疗该疾病,乳腺癌女性的预后会更好。乳腺癌可以根据分子标记物(包括腔A,腔B,她的2个阳性和三重阴性)分类为各种亚型(10,11)。这项研究的目的是检查Luminala乳腺癌型中的基因表达,并查看是否与临床功效和复发有关联(12,13)。这种乳腺癌的亚型与更好的预后和复发率降低有关。我们首先旨在阐明在腔A乳腺癌的病理过程中基因的特定表达,包括基因表达数据,疗效反馈和腔内A乳腺癌的复发。为了找到潜在的相关性,我们
这项研究确定了融合在线粒体DNA(mtDNA)修复中融合中的生理作用,并突出了其与FUS相关神经退行性疾病的发病机理(如杏仁型侧面硬化症(ALS))的影响。内源性FUS与MTDNA连接酶IIIα(MTLIG3)相互作用并募集到线粒体内的DNA损伤位点,这对于维持健康细胞中MTDNA修复和完整性至关重要。使用ALS患者衍生的FUS突变细胞系,转基因小鼠模型和人尸检样品,我们发现FUS功能损害阻碍了MTLIG3的维修作用,从而导致mtDNA损伤和突变增加。这些改变会导致线粒体功能障碍的各种表现,特别是在与疾病病理学有关的压力状况下。重要的是,在患者衍生的诱导多能细胞(IPSC)中纠正FUS突变可保留mtDNA完整性。类似地,引入人DNA连接酶1的焦油恢复了FUS突变细胞中的修复机制和线粒体活性,这表明潜在的治疗方法。我们发现FUS在线粒体健康和mtDNA修复中的关键作用,为线粒体功能障碍在FUS相关运动神经元疾病中的线粒体功能障碍提供了宝贵的见解。
。CC-BY 4.0国际许可证。根据作者/资助者,它是根据预印本提供的(未经同行评审的认证),他已授予Biorxiv的许可证,以在