当前的环境和气候变化对植物 - 病因相互作用的结果有明显的影响,进一步强调了非生物应力强烈影响各级生物相互作用。例如,生理参数(例如植物结构和组织组织)以及原发性和专业的代谢受环境限制的影响,并且这些结合使单个植物成为给定病原体的或多或少适合的宿主。此外,非生物应力会影响植物防御和病原体毒力的及时表达。的确,几项研究表明,温度的变化以及水和矿物营养物的可用性会影响植物防御基因的表达。毒力基因的表达(已知对于疾病爆发至关重要)也受环境条件的影响,可能会修饰现有的病原体,并为新兴的病原体铺平道路。在这篇综述中,我们总结了我们当前对植物和相互作用病原体一侧转录水平上生物相互作用的影响的知识。我们还对非生物和生物胁迫的四种不同组合进行了元数据分析,该组合鉴定了197个常见的调制基因,其基因本体论术语中具有强烈富集的基因。我们还描述了选定的防御相关基因的多元素特定响应。
摘要 胰腺导管腺癌 (PDAC) 是根据五年生存率得出的最致命癌症之一。了解化学耐药性可以制定新的治疗策略来改善患者的预后。肿瘤中高水平的 ANGPTL4 与胰腺癌的不良预后相关。我们发现 ANGPTL4 过表达会导致体外对吉西他滨产生耐药性并缩短患者的生存时间。ANGPTL4 的过表达会诱导肿瘤侵袭和转移、增殖和分化以及抑制细胞凋亡的转录特征。为了更好地了解 ANGPTL4 如何导致耐药性并探索它是否可能成为有用的治疗靶点,我们测量了 ANGPTL4 过表达或敲低的细胞的转录反应。我们还测量了吉西他滨治疗对这些细胞的影响。这些分析揭示了与 ANGPTL4 激活和吉西他滨反应相关的基因的重叠特征。患者 PDAC 组织中该标记基因表达增加与患者生存期缩短显著相关。我们确定了 42 个与 ANGPTL4 共同调控且对吉西他滨治疗有反应的基因。ITGB4 和 APOL1 就是其中之一。在过表达 ANGPTL4 的细胞系中敲低这两个基因可逆转观察到的吉西他滨耐药性并抑制与上皮间质转化 (EMT) 和 ANGPTL4 过表达相关的细胞迁移。这些数据表明 ANGPTL4 促进 EMT 并调节基因 APOL1 和 ITGB4。重要的是,我们表明抑制这两个靶标可逆转化学耐药性并降低迁移潜力。我们的研究结果揭示了调节肿瘤对治疗反应的新途径,并提出了胰腺癌的相关治疗靶点。
1. 美国阿拉巴马州伯明翰市阿拉巴马大学赫尔辛克医学院细胞、发育和整合生物学系 2. 美国佐治亚州梅肯市默瑟大学生物医学科学系 3. 美国肯塔基州列克星敦市肯塔基大学医学院 4. 美国阿拉巴马州伯明翰市阿拉巴马大学赫尔辛克医学院外科系 5. 美国阿拉巴马州伯明翰市阿拉巴马大学赫尔辛克医学院医学系 * 通讯作者:bnp0001@uab.edu
基因表达分析已彻底改变了癌症诊断和治疗领域,从而更深入地了解驱动肿瘤发生的分子机制。这些测定法同时测量了数千个基因的活性,从而提供了对单个肿瘤分子特征的见解。在个性化医学中,基因表达测定对于根据其癌症的独特遗传特征来调整治疗疗法至关重要。本文探讨了基因表达测定在癌症诊断,其在个性化医学中的应用以及这些技术的挑战和未来前景[1]。
剩余的 pKLAC2 载体 DNA。克隆的基因必须不含 SacII 位点(或 BstXI 位点,如果用 BstXI 消化)才能产生正确的表达片段。无需从剩余的 pKLAC2 载体 DNA 中纯化表达片段
识别双价读取器的关键是该团队能够创建经过特殊修饰的组蛋白和核小体(DNA 以“串珠”结构缠绕在组蛋白上)。通过精心重建 DNA 和组蛋白复合物以进行定制的蛋白质相互作用分析,该团队已经证明,在双价位置,蛋白质被招募到抑制标记(H3K27me3)而不是激活标记(H3K4me3)。
1心血管再生研究所,歌德大学法兰克福大学,西奥多·斯特恩·凯7,德国法兰克福AM,德国法兰克福。2个心肺研究所,德国法兰克福AM。 3 DZHK,Site Rhein/Main,Frankfurt Am Main,德国。 4肺部健康研究所。 Justus-Liebig-University Giessen,Aulweg 132,Giessen,德国,Giessen和Marburg Lung Center(UGMLC),德国肺部研究中心(DZL),Justus-Liebig University Giessen Giessen,Giessen,Giessen,Giessen,德国,德国。 6心脏诊断与治疗研究所,德国IKDT GMBH柏林。 7,法兰克福大学法兰克福大学医院心脏病学系。 德国法兰克福AM。 8 DZHK心血管成像中心实验和转化心血管成像研究所,德国法兰克福大学歌德大学。2个心肺研究所,德国法兰克福AM。3 DZHK,Site Rhein/Main,Frankfurt Am Main,德国。4肺部健康研究所。 Justus-Liebig-University Giessen,Aulweg 132,Giessen,德国,Giessen和Marburg Lung Center(UGMLC),德国肺部研究中心(DZL),Justus-Liebig University Giessen Giessen,Giessen,Giessen,Giessen,德国,德国。 6心脏诊断与治疗研究所,德国IKDT GMBH柏林。 7,法兰克福大学法兰克福大学医院心脏病学系。 德国法兰克福AM。 8 DZHK心血管成像中心实验和转化心血管成像研究所,德国法兰克福大学歌德大学。4肺部健康研究所。Justus-Liebig-University Giessen,Aulweg 132,Giessen,德国,Giessen和Marburg Lung Center(UGMLC),德国肺部研究中心(DZL),Justus-Liebig University Giessen Giessen,Giessen,Giessen,Giessen,德国,德国。6心脏诊断与治疗研究所,德国IKDT GMBH柏林。7,法兰克福大学法兰克福大学医院心脏病学系。 德国法兰克福AM。 8 DZHK心血管成像中心实验和转化心血管成像研究所,德国法兰克福大学歌德大学。7,法兰克福大学法兰克福大学医院心脏病学系。德国法兰克福AM。8 DZHK心血管成像中心实验和转化心血管成像研究所,德国法兰克福大学歌德大学。
膜联蛋白(ANNS)是一个在植物生长,发育和压力反应中起关键作用的进化保守,依赖钙依赖性的磷脂结合蛋白的家族。利用26个高质量玉米基因组的泛基因组,我们鉴定了12个ANN基因,其中包括9个核心基因(以所有26条线为单位)和3个近核基因(以24-25条为单位)。这突出了基于单个参考基因组研究ZMANN基因的局限性。评估26个品种中ANN基因的KA/KS值表明Zmann10在某些品种中处于正选择状态,而其余基因的Ka/ks值小于1,表明纯化选择。系统发育分析将ZMANN蛋白分为六组,其中VI仅包含ZMANN12。某些品种的结构变化改变了保守的结构域,产生了许多非典型基因。转录组分析表明,不同的ANN成员在各种组织以及不同的非生物和生物应力处理下具有不同的表达模式。在冷应力下,来自各种玉米组织的转录组数据的加权基因共表达网络分析鉴定出参与共表达模块的四个ANN基因(Zmann2,Zmann6,Zmann7,Zmann9)。总体而言,这项研究利用高质量的玉米pangenomes对Zmann基因进行生物信息学分析,为ZMANN基因的进一步研究提供了基础。
头颈癌在全球恶性肿瘤中排名第七[1,2],其中90%以上的恶性肿瘤是来自该地区粘膜表面的头颈部鳞状细胞癌(HNSC)[1,2]。在手术,放疗和化学疗法仍然是主要治疗方式,因为它们可以增强临床环境中的患者预后,但晚期病例仍然表现出50%的复发率,并具有威胁生命的后果[3]。这种高复发率可以部分归因于复杂的肿瘤微环境(TME),该环境包括各种肿瘤免疫浸润细胞(TIICS)和其他成分以及癌细胞和基质细胞以及其他成分[4]。基于最近文献中TME的研究,新兴的免疫检查点抑制剂(ICIS)显示出有望改善精选患者的预后[3]。然而,限制仍然是,只有少数患者从ICI中获得益处,因此需要在临床实践中鉴定更有效的治疗靶标[5,6]。
疟疾是由疟原虫属的原生动物寄生虫引起的,并且仍然是全球健康问题。寄生虫具有高度适应的生命周期,其中包括脊椎动物宿主中的连续无性复制和蚊子载体围绕中的性成熟。寄生虫的遗传操纵对破译疟原虫基因功能的功能具有重要作用。常规的反向遗传工具不能用于研究无性血液阶段的基本基因,从而需要制定条件策略。在各种此类策略中,雷帕霉素可诱导的可二聚化CRE(DICRE)重组酶系统是一种有条件地编辑人类感染的恶性疟原虫和啮齿动物疟疾模型寄生虫寄生虫P. Berghei的强大方法。我们先前生成了表达二甲虫的berghei线,并通过有条件地删除了几个必不可少的无性阶段基因来验证它,从而揭示了它们在孢子虫中的重要作用。另一个有效的工具是CRISPR/CAS9技术,该技术已启用了具有更高精度和特异性的目标基因组编辑,并且在疟原虫属中具有大量先进的基因组工程。在这里,我们通过在寄生虫中整合了Dicre盒和荧光标记来开发新的Berghei寄生虫线,以组成表达Cas9。由于CRISPR/CAS9和DICRE的双重整合,这些新系列允许同时进行无与伦比的基因修饰和条件调节。为了说明这种新工具的多功能性,我们有条件地淘汰了编码贝尔格(P. Berghei)类似claudin的apicomplexan微米蛋白(夹具)的基本基因,并确认了夹具在侵入红细胞细胞中的作用。