在这项工作中,我们提出了一种新颖的歧视性框架,用于灵巧的掌握生成,称为d外部g rasp tr ansformer(dgtr),能够通过仅使用一个向前的通行方式处理对象点云来预测一组可行的抓握姿势。我们将敏捷的掌握生成作为设定的预测任务,并为其设计一个基于变压器的握把模型。但是,我们确定此设置的预测范式在灵活的掌握领域遇到了几种优化的挑战,并导致限制性能。为了解决这些问题,我们提出了培训和测试阶段的渐进策略。首先,提出了动态静态匹配训练(DSMT)策略,以增强训练阶段的光学稳定性。第二,我们使用一对对抗性损失来实现对抗平衡的测试时间适应(ABTTA),以提高测试阶段的掌握质量。dexgraspnet数据集的实验结果证明了DGTR可以预测具有高质量和多样性的灵活掌握姿势的能力。值得注意的是,在保持质量高的同时,DGTR Sigsigs所预测的Grasp的多样性明显优于先前的多个指标,而没有任何数据预处理。代码可在https://github.com/isee-laboratory/dgtr上找到。
农村电气化将使该国城乡地区普遍使用电力,符合可持续发展目标 7。微型光伏系统的投入为远离电网的家庭提供了另一种电力服务途径,符合可持续发展目标 7 和 10。用于储能器的锂电池的生产将保证农村地区不间断地获得电力服务,符合可持续发展目标 7 和 9。可再生能源将使该国实现可持续发展,符合可持续发展目标 7、11 和 13。能源效率将为该国的可持续发展带来新的机遇,符合可持续发展目标 11。通过生产绿色氢气,将有可能减少化石资源能源的使用,符合可持续发展目标 7、12 和 13。用于电动汽车的锂电池的制造将有助于减少化石燃料的使用和二氧化碳的排放,符合可持续发展目标 7 和 13。
胶原蛋白是哺乳动物中最丰富的蛋白质,广泛表达于组织器官和肿瘤细胞外基质中。肿瘤胶原主要聚集在肿瘤基质或肿瘤血管内皮下,由于肿瘤血管的结构破碎,肿瘤胶原暴露在外。通过血管的通透性和滞留性(EPR)效应,胶原结合大分子容易与肿瘤胶原结合并在肿瘤内聚集,使得肿瘤胶原成为潜在的肿瘤特异性靶点。近年来,大量研究证实,靶向肿瘤细胞外基质(TEM)内的胶原可增强免疫治疗药物在肿瘤处的蓄积和滞留,显著提高其抗肿瘤疗效,并避免严重的不良反应。本文对已知的胶原结合结构域(CBD)或蛋白(CBP)、其作用机制及其在肿瘤靶向免疫治疗中的应用进行综述,并展望未来的发展。
药物化合物已成为废水中越来越重要的污染物来源,因为它是传统的处理方法无效地去除它们的方法,因此它们通常被放入环境中。可以使用液体液体提取成功去除药物,并且可以使用宇宙RS预测相互作用并识别最有前途的溶剂。但是,COSMO热模型无法解释关键过程参数,从而降低了这些计算模型的准确性。因此,需要替代计算方法来准确预测可以纳入处理和相互作用变量的药物的提取产率。这项工作使用机器学习来预测使用八种溶剂的11种药物的提取产率。探索了六个回归模型和两个分类模型。使用ANN回归器(测试MAE:4.510,测试R 2:0.884)和RF分类器(测试精度:0.938,测试召回:0.974)获得了最佳性能。RF回归分析和分类还显示了关键的提取产率特征:溶剂与喂养比,N - 辛烷 - 水分系数,氢键,氢键和范德华对多余的焓的贡献,以及pH距离至最近的PKA。机器学习显示为筛选和选择最有希望的溶剂和过程条件的绝佳工具,以从废水中去除药物。
宏基因组新一代测序 (mNGS) 是诊断传染病的一种变革性方法,它利用无偏高通量测序直接检测和表征临床样本中的微生物基因组。本综述全面概述了 mNGS 技术的基本原理、测序工作流程和平台。该方法的骨干包括对从不同样本类型中提取的总核酸进行散弹枪测序,能够在不了解传染源的情况下同时检测细菌、病毒、真菌和寄生虫。mNGS 的主要优势包括它能够识别稀有、新型或不可培养的病原体,与传统的基于培养的方法相比,可以更全面地了解微生物群落。尽管有这些优势,但数据分析复杂性、高成本以及需要优化样品制备方案等挑战仍然是重大障碍。mNGS 在各种全身性感染中的应用凸显了其临床实用性。本综述中讨论的案例研究说明了其在诊断呼吸道感染、血流感染、中枢神经系统感染、胃肠道感染等疾病方面的功效。通过快速识别病原体及其基因组特征,mNGS 有助于及时和有针对性的治疗干预,从而改善患者的治疗结果和感染控制措施。展望未来,mNGS 在传染病诊断领域的前景看好。生物信息学工具和测序技术的进步有望简化数据分析、提高灵敏度和特异性并缩短周转时间。与临床决策支持系统的集成有望进一步优化 mNGS 在常规临床实践中的利用。总之,mNGS 代表了传染病诊断领域的范式转变,为微生物多样性和发病机制提供了无与伦比的见解。尽管挑战依然存在,但持续的技术进步具有巨大的潜力,可以巩固 mNGS 作为现代医学武器库中的关键工具的地位,使临床医生能够精确、快速、全面地检测病原体。
人工智能(AI)方法是现代世界不可或缺的一部分。如今,每个与智能手机互动的人都与AI接触(Herget,2024)(Wired Insider,2021)。 自从大型语言模型(LLMS)(CF(BSI,2024a)易于获得BSI的评论)以来,公众对AI存在的意识已广泛传播。 但是,自引入LLM之前,AI算法支持或自动执行决策过程。 Propublica的报告,即预测模型用于确定美国犯罪嫌疑人的累犯风险,受到了很大的关注(Angwin等,2016)。 在金融领域,基于AI的预测模型用于支持贷款申请的决定或预测金融市场的发展(Aziz等,2022)。 此外,使用基于AI的决策支持系统进行诊断和治疗患者的治疗,目前已在医学中进行了研究或部分实施(社论,2024年)(皇家放射学院,等,2023)(BSI,2024年)。 这些是高度敏感的领域,在这种领域中,错误的决定可能会对公民造成社会,法律,财务或健康损害。如今,每个与智能手机互动的人都与AI接触(Herget,2024)(Wired Insider,2021)。自从大型语言模型(LLMS)(CF(BSI,2024a)易于获得BSI的评论)以来,公众对AI存在的意识已广泛传播。但是,自引入LLM之前,AI算法支持或自动执行决策过程。Propublica的报告,即预测模型用于确定美国犯罪嫌疑人的累犯风险,受到了很大的关注(Angwin等,2016)。在金融领域,基于AI的预测模型用于支持贷款申请的决定或预测金融市场的发展(Aziz等,2022)。此外,使用基于AI的决策支持系统进行诊断和治疗患者的治疗,目前已在医学中进行了研究或部分实施(社论,2024年)(皇家放射学院,等,2023)(BSI,2024年)。这些是高度敏感的领域,在这种领域中,错误的决定可能会对公民造成社会,法律,财务或健康损害。
提供给文本对图像差异模型的提示的质量决定了生成的内容对用户意图的忠诚程度,通常需要“及时工程”。要通过及时的工程来利用目标图像的视觉概念,当前方法在很大程度上通过优化然后将它们映射到伪tokens来依赖嵌入反演。然而,使用这种高维矢量表示是具有挑战性的,因为它们缺乏语义和可解释性,并且只允许使用它们时模拟矢量操作。相反,这项工作着重于反转扩散模型,以直接获得可靠的语言提示。这样做的挑战在于,由此产生的优化问题从根本上是离散的,提示的空间呈较大。这使得使用标准优化技术,例如随机梯度下降,困难。为此,我们利用延迟的投影方案来访问代表模型中词汇空间的提示。此外,我们利用了扩散过程的时间段与图像中不同级别的细节相差的发现。后来的,嘈杂的,前传扩散过程的时间段对应于语义信息,因此,此范围内的迅速反转提供了代表图像语义的令牌。我们表明,我们的方法可以确定目标图像的语义可解释和有意义的提示,该提示可用于合成具有相似内容的多样化图像。我们说明了优化提示在进化图像生成和概念删除中的应用。
虽然扩散模型已显着提高了图像生成的质量,但它们在这些图像中准确且相干渲染文本的能力仍然是一个重大挑战。场景文本生成的常规基于扩散的方法通常受到对中间布局输出的依赖的限制。这种依赖性通常会导致文本样式和字体的多样性限制,这是布局生成阶段的确定性质所引起的固有限制。为了应对这些挑战,本文介绍了SceneTeTgen,这是一种基于新颖的扩散模型,专门设计用于规避预定义布局阶段的需求。这样做,场景 - 文本促进了文本的更自然和多样化的代表。SceneTextGen的新颖性在于其三个关键组成部分的整体:一个字符级编码器,用于捕获详细的印刷属性,并与字符级实例分割模型和Word-
rime部长纳伦德拉·莫迪(Narendra Modi)周二为基于开源的全球人工智能(AI)建立全球框架提供了一个有力的案例,从而提高了信任,透明度,并且没有偏见。在这里与法国总统伊曼纽尔·马克隆(Emmanuel Macron)共同主持了AI行动峰会,莫迪说,AI正在改变政体,经济,安全和社会活动,并在本世纪为人类撰写《人类守则》。Modi还提议在印度举行下一次AI行动峰会,支持法国首次峰会上为建立“ AI基金会”和“可持续性AI委员会”的决定。“需要全球努力,以建立我们共同价值,解决风险并建立信任的治理和标准,”莫迪补充说,治理不仅在于管理风险和竞争,而且还涉及促进创新并将其部署为全球。“我们必须民主化技术并创建PEO-
基于塑料或合成的纺织品被编织成我们在欧洲的日常生活。他们穿着我们穿的衣服,我们使用的毛巾和我们睡觉的床单。他们在地毯,窗帘和靠垫中,我们用家园和办公室装饰。,他们处于安全带,汽车轮胎,工作服和运动服。合成纺织纤维是由化石燃料资源(例如石油和天然气)生产的。他们的生产,消费和相关的废物处理产生温室气体排放,使用不可再生资源并可以释放微塑料。此简报提供了欧洲合成纺织品经济的概述,分析了环境和气候影响,并强调了开发循环经济价值链的潜力。
