该项目旨在强调不同类型的风暴对氢化气候极端统计的贡献。博士学位候选人将结合典型的统计水文学方法和对大气物理学的过程理解。将开发基于主要物理过程的历史风暴的分类,并评估不同风暴类型对发生极端事件的可能性的贡献。这将使候选人根据气候模型模拟中风暴类型的预期变化提出对未来极端的创新预测。
水的供应,水力和粮食安全是中亚社会在人类时代的主要关注点(Jalilov等,2016; Reyer等,2017)。与工业前级别相比,在本世纪末2 C以下2 C以下的全球变暖限制了全球变暖(Meinshausen等,2020)。然而,CA的温度趋势上升已经显着高于全球平均值(Yao等,2021)。因此,如果越过这个阈值,则假定社会和经济影响是严重的(Reyer等,2017)。CA的气候主要由干旱,半干旱,温带和半渗透区域主导(Duan等,2019; Jalilov等,2016; Yao等,2021)。此外,这些地区在苏联崩溃后经历了极端的非校园和经济状况(Lioubimtseva&Henebry,2009年)。根据Pekel等人。(2016年),在1984年至2015年之间,CA和中东发生了超过70%的全球永久性地表水损失。地下水在全球范围内提供超过36%的饮酒和42%的农业水(Ashraf等,2021)。但是,其可用性受蒸发和人类戒断的增加影响。大约33%的地球人口生活在封装地中海,亚洲,中东和北非的半干旱和干旱地区,被归类为水压力区域(Vörösmarty等,2010)。全球综合综合(Vörösmarty等,2010)得出的结论是,世界上约80%的人口遭受了高水平的水安全性。山是加利福尼亚州当地河流的最重要水源。他们在冬季和秋季中通过冰川,多年冻土和雪保持前态(Chen等,2016)。在CA的更快的全球变暖趋势下,降水量和融雪/冰川比和降水
摘要气候变化最复杂但可能最严重的影响是极端天气事件引起的。在全球互动的经济中,损害赔偿可能会导致远程扰动和级联后果,这是供应链沿线的涟漪效应。在这里,我们显示出一种经济连锁共鸣,可以在极端或重叠的天气及其影响相互作用时放大损失。这相当于气候引起的热应激,河流洪水和热带气旋的平均扩增为21%。对> 7000个区域经济领域之间180万个贸易关系的时间演变进行建模,我们发现对未来极端的区域反应在其共振行为上也是强烈的异质性。由于某些地区的需求增加和由于其他地区的需求或供应短缺而导致的需求增加,对福利的诱导影响因素而有所不同。在当前的全球供应网络中,高收入经济体中极端天气的波纹共振效应最强,这是评估过去和未来经济气候影响时要考虑的重要效果。
水的供应,水力和粮食安全是中亚社会在人类时代的主要关注点(Jalilov等,2016; Reyer等,2017)。与工业前级别相比,在本世纪末2 C以下2 C以下的全球变暖限制了全球变暖(Meinshausen等,2020)。然而,CA的温度趋势上升已经显着高于全球平均值(Yao等,2021)。因此,如果越过这个阈值,则假定社会和经济影响是严重的(Reyer等,2017)。CA的气候主要由干旱,半干旱,温带和半渗透区域主导(Duan等,2019; Jalilov等,2016; Yao等,2021)。此外,这些地区在苏联崩溃后经历了极端的非校园和经济状况(Lioubimtseva&Henebry,2009年)。根据Pekel等人。(2016年),在1984年至2015年之间,CA和中东发生了超过70%的全球永久性地表水损失。地下水在全球范围内提供超过36%的饮酒和42%的农业水(Ashraf等,2021)。但是,其可用性受蒸发和人类戒断的增加影响。大约33%的地球人口生活在封装地中海,亚洲,中东和北非的半干旱和干旱地区,被归类为水压力区域(Vörösmarty等,2010)。全球综合综合(Vörösmarty等,2010)得出的结论是,世界上约80%的人口遭受了高水平的水安全性。山是加利福尼亚州当地河流的最重要水源。他们在冬季和秋季中通过冰川,多年冻土和雪保持前态(Chen等,2016)。在CA的更快的全球变暖趋势下,降水量和融雪/冰川比和降水
水的供应,水力和粮食安全是中亚社会在人类时代的主要关注点(Jalilov等,2016; Reyer等,2017)。与工业前级别相比,在本世纪末2 C以下2 C以下的全球变暖限制了全球变暖(Meinshausen等,2020)。然而,CA的温度趋势上升已经显着高于全球平均值(Yao等,2021)。因此,如果越过这个阈值,则假定社会和经济影响是严重的(Reyer等,2017)。CA的气候主要由干旱,半干旱,温带和半渗透区域主导(Duan等,2019; Jalilov等,2016; Yao等,2021)。此外,这些地区在苏联崩溃后经历了极端的非校园和经济状况(Lioubimtseva&Henebry,2009年)。根据Pekel等人。(2016年),在1984年至2015年之间,CA和中东发生了超过70%的全球永久性地表水损失。地下水在全球范围内提供超过36%的饮酒和42%的农业水(Ashraf等,2021)。但是,其可用性受蒸发和人类戒断的增加影响。大约33%的地球人口生活在封装地中海,亚洲,中东和北非的半干旱和干旱地区,被归类为水压力区域(Vörösmarty等,2010)。全球综合综合(Vörösmarty等,2010)得出的结论是,世界上约80%的人口遭受了高水平的水安全性。山是加利福尼亚州当地河流的最重要水源。他们在冬季和秋季中通过冰川,多年冻土和雪保持前态(Chen等,2016)。在CA的更快的全球变暖趋势下,降水量和融雪/冰川比和降水
热带降水极端及其随着表面变暖的变化,使用全球风暴解析模拟和高分辨率观察结果进行了研究。模拟表明,对流的中尺度组织是不能以常规的全球气候模型来物理代表的过程,对于热带每日累积降水极端的变化很重要。在模拟和观察结果中,每日降水极端在更有条理的状态下增加,与较大但频繁的风暴有关。重复模拟以使气候变暖会导致每月均值每日降水极端的增长。较高的降水百分位数对对流组织具有更大的敏感性,预计随着变暖而增加。没有组织变化,热带海洋上最强烈的每日降水量以接近Clausius-Clapeyron(CC)缩放的速度增加。因此,在未来的温暖状态下,组织的增加,海洋的每日极端降水量最高的速度比CC缩放更快。
生物危害中心耦合模型对比项目第6阶段气候投影数据集(CHC-CMIP6)旨在支持最近和近乎近距离的气候相关危害分析,包括极端潮湿的热量和干旱条件。Global daily high resolution (0.05°) grids of the Climate Hazards InfraRed Temperature with Stations temperature product, the Climate Hazards InfraRed Precipitation with Stations precipitation product, and ERA5- derived relative humidity form the basis of the 1983–2016 historical record, from which daily Vapor Pressure Deficits (VPD) and maximum Wet Bulb Globe Temperatures (WBGT max ) were derived.从共享的社会经济途径2-4.5和SSP 5-8.5场景中进行的大型CMIP6合奏随后用于开发高分辨率每日2030和2050“ Delta”领域。这些三角洲用于扰动历史观察结果,从而产生0.05°2030和2050的日常降水,温度,相对湿度以及派生的VPD和WBGT最大值的投影。最后,每个时间段都得出了每个变量的极端频率计数。
热带降水极端及其随着表面变暖的变化,使用全球风暴解析模拟和高分辨率观察结果进行了研究。模拟表明,对流的中尺度组织是不能以常规的全球气候模型来物理代表的过程,对于热带每日累积降水极端的变化很重要。在模拟和观察结果中,每日降水极端在更有条理的状态下增加,与较大但频繁的风暴有关。重复模拟以使气候变暖会导致每月均值每日降水极端的增长。较高的降水百分位数对对流组织具有更大的敏感性,预计随着变暖而增加。没有组织变化,热带海洋上最强烈的每日降水量以接近Clausius-Clapeyron(CC)缩放的速度增加。因此,在未来的温暖状态下,组织的增加,海洋的每日极端降水量最高的速度比CC缩放更快。
摘要。在预计极端预言的预计增加之后,例如高纬度地区或高海拔高度时,寒冷地区可能会增加极端降雪。相比之下,在低至中等区域中,由于变暖条件,预计经历降雨而不是降雪的可能性会增加。然而,在山区,尽管可能存在这些对比趋势,但根据海拔的趋势,量化的降雪变化仍然很差。本文评估了在法国阿尔卑斯山的平均年度最大值和100年回报水平的大降雪和极端降雪的预计变化,这是海拔和全球温暖水平的函数。我们将最近的方法基于具有非平稳性极值模型的年度最大值的肛门,以从代表性的8.5(RCP8.5)场景下的20个调整后的一般循环模型 - 区域气候模型(GCM – RCM)对。对于法国阿尔卑斯山的23个地块中的每一个,在水文意义上(8月1日至7月31日)的最大值是从1951年到2100,每300 m的高度在900至3600 m之间。依赖于按块量表和所有按摩中的量表和平均年龄计算出的相对或绝对变化(在此对应于当前的气候条件(在此对应于 + 1℃)。在 + 4℃,平均年度最大值和100-总体而言,预计每日平均降雪年度最大值将降低到3000 m以下,并增加到3600 m以上,而100年的回报水平预计将降低到2400 m以下,并增加到3300 m以上。在介于两者之间的高度上,值平均预计会增加,直到 + 3℃全球变暖,然后降低。
由于地形驱动的动力学在(次)公里(例如Bora风)和复杂的海洋测深的测定法上引起的,其中包括许多通道,凹陷和山脊,在半封闭的Adriatic区域内的大气 - 海洋动力学在可用的环境区域模型中无法很好地复制。因此,特定开发了亚得里亚海和海岸(Adrisc)公里大气层模型,以准确评估历史(1987-2017)和远处(2070-2100)条件下的亚得里亚海气候危害。在这项研究中,我们分析了气候变化对预计的亚得利亚趋势,可变性和极端事件的影响。在大气中,我们的结果主要遵循已经发表的文献:强烈的土地对比,干旱增加和极端的降雨事件以及沿海地区的风速下降。在海洋中,表面和中等温度的强度和恒定升高与盐度降低有关,除非夏季盐度在沿海地区上升的表面。在底部和海洋循环中,我们的结果表现出强烈的对比。在沿海地区,底温度上升,底部盐度的速度降低了,而当前速度的变化可以忽略不计。在亚得里亚海最深的部分,负底温度趋势会导致比表面慢2.5°C慢,而底部盐度增加。此外,洋流在表面和中间层中加速,但在底部减速。这些海洋的结果表明,北部亚得里亚海中茂密的水的形成减少,南部亚得里亚海气旋回旋的强化和收缩,以及在代码深处的最深部分的垂直地层加强可能与亚种式水水和亚法利亚水平的变化相关的垂直地层。鉴于这些变化对亚得里亚海沿海社区和海洋生物的潜在影响,这项研究强调了增加亚得里亚海地区正在进行的千年规模建模工作,旨在实施政策和适应计划,以更好地针对该规范区域预测的当地气候变化量身定制。鉴于这些变化对亚得里亚海沿海社区和海洋生物的潜在影响,这项研究强调了增加亚得里亚海地区正在进行的千年规模建模工作,旨在实施政策和适应计划,以更好地针对该规范区域预测的当地气候变化量身定制。