简介:表现出负血氧水平的大脑区域,依赖性脑血管反应性(BOLD-CVR)对二氧化碳(CO 2)的反应被认为遭受了完全耗尽的自动调节性脑血管储备的能力和表现出血管窃取现象。如果此假设是正确的,那么在基于电动机的BOLD FMRI研究中,血管窃取现象的存在应随后导致相等的FMRI信号响应(代谢增加而不会增加由于耗尽的储备能力而增加的脑血流),而其他功能性的脑组织则在其他功能性脑组织中。为了调查这一前提,这项研究的目的是进一步研究表现出负BOLD CVR的大脑区域中基于电动机的BOLD-FMRI信号反应。Material and methods: Seventy-one datasets of patients with cerebrovascular steno-occlusive disease without motor defects, who underwent a CO 2 -calibrated motor task-based BOLD-fMRI study with a fingertapping para- digm and a subsequent BOLD-CVR study with a precisely controlled CO 2 -challenge during the same MRI ex- amination, were included.我们比较了双侧前后Gyri - i的BOLD-FMRI信号反应。 e。感兴趣的区域(ROI)与此ROI中的相应BOLD-CVR。使用对42个接受相同研究方案的健康个体的BOLD-FMRI任务研究的第二级组分析确定ROI。结果:BOLD-CVR的总体下降与ROI内BOLD-FMRI信号响应的降低有关。对于表现出阴性BOLD-CVR的患者,我们发现基于正电动机和负电动机的BOLD-FMRI信号反应。结论:我们表明,对CO 2的负CVR响应的存在与基于Motor的BOLD-FMRI信号反应有关,其中一些患者表现出更大的假定 - 负面BOLD-FMRI信号反应,而其他患者则表现出阳性的BOLD-FMRI信号反应。此发现可能表明
我们通过基于社交媒体的广告招募了具有IGD风险的年轻参与者。在研究1中,9名参与者执行了基于游戏视频的提示反应任务(多媒体附录1,图S1),以建立VTA提示反应性与IGD症状水平之间的关联[5]。在研究2中,筛选了20名不同的参与者,并随机分配给2组中的1组。在多媒体附录1,图S2和S3中描述了纳入标准和筛选工具。实验组从VTA(蒙特利尔神经学成像[MNI]坐标[1,–17,–13]; 246素;图1 B)中收到了反馈,而对照组则从右中间回旋右中间接收了假反馈。之所以选择此区域,是因为它与奖励处理无关,并且与
使用神经影像数据将精神健康障碍与健康对照的患者区分开来,已采用了广泛的机器学习方法。但是,几乎所有此类方法都基于连接矩阵或从神经成像数据得出的特征应用于输入。最近只有几篇论文根据原始的基于体素的时空数据考虑了这种分类。在本文中,我们报告了基于体素的fMRI数据上一些尖端机器学习算法的性能,以对健康对照和精神分裂症患者进行分类。我们采用的方法包括卷积神经网络,具有较长短期记忆的卷积复发性神经网络以及基于Wasserstein生成的对抗网络的分类的转移学习方法。为了减轻适合可用硬件的计算负担,我们必须将原始的4维数据减少到几乎所有架构的3维输入中。我们的结果表明,基于卷积神经网络的相对简单的体系结构在对健康对照组中的患者分组中表现出合理的不兼容性。相反,我们使用的其他两个复杂架构的性能相对较差。
群体成像显著增加了功能成像数据集的大小,为个体间差异的神经基础提供了新的见解。分析这些大数据带来了新的可扩展性挑战,包括计算和统计方面的挑战。因此,大脑图像通常总结为几个信号,例如使用大脑图谱或功能模式减少体素级测量值。选择相应的大脑网络非常重要,因为大多数数据分析都是从这些减少的信号开始的。我们贡献了精细解析的功能模式图谱,包含 64 到 1024 个网络。这些功能模式词典 (DiFuMo) 是在数百万个 fMRI 功能性大脑体积上训练的,总大小为 2.4TB,涵盖了 27 项研究和许多研究小组。我们展示了在我们的细粒度图谱中提取精简信号对许多经典功能数据分析流程的好处:从 12,334 个大脑反应中解码刺激、跨会话和个体的 fMRI 标准 GLM 分析、提取 2,500 个个体的静息状态功能连接组生物标志物、对超过 15,000 个统计图进行数据压缩和荟萃分析。在每一个分析场景中,我们都将我们的功能图谱与其他流行参考资料的性能进行比较,并与简单的体素级分析进行比较。结果强调了使用高维“软”功能图谱来表示和分析大脑活动同时捕捉其功能梯度的重要性。高维模式的分析实现了与体素级类似的统计性能,但计算成本大大降低,可解释性更高。除了提供它们之外,我们还根据这些模式的解剖位置为其提供有意义的名称。这将有助于报告结果。
材料和方法:在这项横断面研究中,我们分析了 2009 年至 2023 年在麻省总医院麻醉下获得的临床 rs-fMRI 数据。对每位患者的独立成分分析驱动的静息状态网络 (RSN) 进行定性和定量评估,并将其分为强或弱两组。使用定性方法评估整体网络,使用定量方法评估运动和语言网络。在 4 个结果类别中分析了 RSN 稳健性:整体、组合运动语言、单个运动和语言网络。预测变量包括 rs-fMRI 采集参数、麻醉药物、潜在的大脑结构异常、年龄和性别。使用逻辑回归来检验研究变量对 RSN 稳健性的影响。
解释神经过程使人类能够看到、理解并与我们在世界上遇到的人、地方和物体互动,这是心理学的一个基本目标。为实现这一目标,实验上最丰富的理论方法之一是表明特定大脑区域执行的认知操作可以通过该区域的解剖连通性推断(至少部分推断)。受神经解剖数据约束的认知模型可以描绘出复杂的认知功能是如何建立在来自主要感觉大脑区域的信息整合之上的。
方法:招募了22例中风患者和15例健康受试者,以招募年龄,性别和体重指数。康复评估包括峰值氧气吸收(VO 2峰),峰值工作率,10米步行测试(10MWT),五次静止测试(FTSST)和6分钟的步行距离(6MWD)。静止状态fMRI数据,并分析了低频波动振幅(ALFF)的幅度变化与CRF分析以检测中风患者中与CRF相关的大脑区域的相关性。根据ALFF分析,进行大脑网络分析,并选择了中风患者的CRF相关脑区域作为种子点。功能连通性(FC)分析用于识别中风患者可能与CRF相关的大脑区域和网络。
触觉接口可与功能性磁共振成像 (fMRI) 结合使用,使神经科学家和临床医生能够研究执行任意动态任务所涉及的大脑机制 [1]。新型材料和新技术的应用以及 MR 技术的进步使得机电一体化系统能够部署在 MR 环境中 [2],[3],[4],[5]。具有不同驱动原理和设计配置的 fMRI 兼容触觉接口用于人体运动控制实验,主要用于上肢运动。研究具有多自由度 (DoF) 的运动控制可以提供有关神经系统如何协调涉及多个关节的运动并处理耦合和非线性动力学的重要信息 [6],[7]。然而,肢体节段之间的动态相互作用通常会引起头部运动,从而导致脑部 MR 图像上的运动伪影 [8],[9],[10]。此外,每增加一个 DoF,对运动和肌肉活动的分析就会变得更加复杂。这表明,只有当目标神经过程需要时,才可以研究多关节运动 [11],[12]。虽然脑成像是观察整个大脑感觉运动控制神经过程的极少数非侵入性窗口之一,但它会产生噪声信号。传统上,由于安全和成本限制,
本文研究了多媒体社区的勇敢新想法,并提出了一个新颖的框架,将梦想转化为使用fMRI数据的连贯的视频叙事。本质上,梦想已经吸引了人类数百年的历史,使我们的潜意识瞥见了我们的潜意识。大脑成像的最新进展,尤其是功能磁共振成像(fMRI),为探索梦的神经基础提供了新的方法。通过将主观梦的体验与客观的神经生理数据相结合,我们旨在了解梦想的视觉方面并创建完整的视频叙事。我们的过程涉及三个主要步骤:重建视觉感知,解码梦想图像和整合梦想故事。在fMRI分析和语言建模中使用创新技术,我们试图突破梦想研究的界限,并在睡眠期间对视觉体验进行更深入的了解。本技术报告介绍了一种新颖的方法,可以使用fMRI信号并将梦想视觉效果编织到使用语言模型的叙事中。我们收集了一个梦的数据集以及描述以评估框架的有效性。
此预印本版的版权持有人于2025年1月15日发布。 https://doi.org/10.1101/2025.01.13.632809 doi:biorxiv Preprint