摘要:最近已经建立了在硝酸硅中制造固有的单光子发射器的强大过程。这些发射器显示出由于室温运行和与技术成熟的氮化硅光子学平台的整体式整合而导致的量子应用的希望。在这里,通过测量光学跃迁波长,线宽和光子抗激素的基本光物理特性,探测了从4.2K到300K的温度的函数。通过测量零孔子线的不均匀和温度依赖性的均匀宽扩大,提供了对终身有限线宽潜力的重要见解。在4.2K时,发现光谱扩散是主要的宽扩向机理,而时间分辨的光谱测量结果揭示了具有仪器限制线宽的零孔子线的均匀宽宽。
违反学术诚信的行为——将他人的想法、论点、文字或图像当作自己的、使用未经授权的材料、虚假陈述、伪造或歪曲研究数据、未经授权的合作或协作或为其他学生完成工作——是严重的学术违规行为,会降低学位质量,是不能容忍的。处罚可能包括:提交的作业和/或课程不及格;学术留校察看;拒绝继续或注册特定学位课程;暂停全日制学习;暂停卡尔顿大学的所有学习;被卡尔顿大学开除,等等。学生应熟悉并遵守卡尔顿大学学生学术诚信政策,该政策及其合规资源可在以下网址找到:https://carleton.ca/registrar/academic-integrity/
Yuchan Zhang和Qilin Jiang使用泵探针成像技术检查了嘴唇形成机制。他们强调了飞秒激光脉冲塑形(考虑时间/频率,极化和空间分布)如何有效地制造高质量的嘴唇。他们还探索了嘴唇的各种应用以及塑造超快速激光器以进行高效,高质量处理的重要性[16]。Hongfei Sun,Jiuxiao Li和Mingliang Liu回顾了Lips在生物医学应用中的作用。他们讨论了激光参数的影响,例如能量,脉冲计数,极化和脉搏持续时间,对嘴唇的产生。本综述还介绍了飞秒激光修饰的嘴唇如何应用于功能表面,控制表面润湿性,细胞定植和增强的摩擦学特性[17]。
摘要 — 由于市场上可用的样品数量很少,通过实验确定 10 kV SiC-MOSFET 功率模块的可靠性具有挑战性。基于 3D 热计算的数字设计可提高 10 kV SiC-MOSFET 功率模块的可靠性。模块设计是根据数字孪生建模计算确定的。通过制造 10kV SiC-MOSFET 功率模块样品并将计算温度与测量结果进行比较,证实了数字孪生模型的正确性。该设计侧重于芯片上的铝线,并阐明了改变导线布局对导线温度的影响。结果表明,与传统设计相比,改进的导线布局可将导线温度降低 2.2-5.3%。根据基于 Coffin-Manson 模型的预测,这有望将功率循环能力提高高达 31%。
铁路通过交通,速度和负载在这些年来大大增加,促使行业利益相关者和研究人员寻求一种替代的卧铺材料,该材料可以证明其具有较高的在职弯曲抵抗力并具有环境友好和耐用的能力。为了满足这些需求,并且由于环境问题,KENAF增强的聚酰胺已变得非常重要。但是,由于其在这方面的性能不可用,因此无法用作铁路轨道组件。在弥合此差距时,本文着重于制造和表征处理过的六种不同配方的KENAF纤维(TKF,10%加载间隔时为0-50%),用于铁路卧铺应用。结果表明,TKF的掺入影响了聚酰胺在吸水,负载能力和热稳定性方面的行为。
众所周知,材料的性能高度取决于其结构。对这种关系主题的研究始终是物质科学家的重点。由于其特殊的机械性能,较大的特定表面积,出色的电气/热传导3D网络以及特殊的多孔结构,因此已设计和应用多功能的层次纳米结构材料,用于各种材料系统,包括聚合物,金属,无机材料及其复合材料。研究材料的机械,电气,热和电化学特性的独特纳米结构的机制对于获取新知识和为开发新的高级材料铺平道路至关重要。因此,该领域的调查吸引了增加的研究兴趣。纳米材料特刊的目的是整理与设计和制造等级纳米结构材料及其各种应用领域的最新进步有关的最新贡献。
在化石燃料上运行的常规汽车最近被认为是环境污染的重要贡献者之一,尤其是考虑到它们与全球人群有关的数量越来越多。电动汽车(EV)被认为是解决此问题的绝佳解决方案。最困难的挑战是使用高效且负担得起的电池增加电动汽车的产量。EV中使用的所有类型的电池都以温度形式发生功率损耗。电池热管理系统(BTM)的开发是一个强大的障碍。新概念旨在通过将其与热电发电机(TEG)集成来提高热电冷却器(TEC)效率,该效率是通过制造TECTEG模型来完成的。组合TEG和TEC的目标是利用在TEC热侧产生的废热,并将其转换为可用于喂养TEC并提高其效率的流。
摘要 增材制造 (AM) 是一种颠覆性技术,具有制造复杂几何形状零件和修复中断的供应链的独特能力。然而,许多 AM 技术的加工特性很复杂,因为原料熔化的加热和冷却循环很复杂。因此,将用于传统制造的材料设计和加工优化方法直接应用于 AM 技术具有很大的挑战性。在这篇观点论文中,我们讨论了一些正在进行的高通量 (HT) 实验的努力,这些实验可用于材料开发和加工设计。特别是,我们关注基于束和粉末的 AM 技术,因为这些方法在 HT 实验中已经取得了成功。此外,我们提出了将 AM 技术用作材料信息工具以促进材料基因组的新机会。