考虑到可以应用的各种技术的复杂性,对古老的纺织品进行系统研究并不总是那么简单,本文以HS(Holy Shorh Roud)为例,讨论了与相对结果相对结果应用的最新测试。在简要介绍了纺织品并解释了其复杂性后,本文介绍了1978年获得的一些测试和结果。织物中存在的黑点,可归因于人的图像,添加有关其可能起源的有趣信息。通过将传统的信息与1988年进行的放射性碳测试和创新技术产生的其他新约会结果进行比较,讨论了约会问题。从HS真空吸尘的尘埃,用于对来自外部污染的人类DNA进行研究,提供了对遗物起源的有趣假设;另外,在这些尘埃中,电子微粒为拜占庭习俗提供了有趣的假设。最后,还考虑了与纺织品保护有关的问题。此示例显示了如何从纺织品有趣的科学结果和对先前历史假设的确认中获得的可能性。关键词:古代纺织品,神圣的裹尸布,DNA,体液,技术,约会,历史信息1。引言世界上有许多历史和考古发现,鲜为人知的起源可能会经过详细的研究。其中没有
摘要 极寒环境严重影响了人类的舒适度、安全性和性能,因此需要不断开发创新的织物技术。材料保暖的能力至关重要,但传统织物在舒适性、耐用性和保暖性能方面往往存在缺陷。为了追溯织物技术的发展,我们从历史的角度来追溯织物技术的演变和关键挑战,强调它们对极寒条件下织物性能的关键影响。通过强调分层系统的重要性,探讨了设计考虑因素,以提高舒适度、运动性和保护性。深入研究了用于评估织物在寒冷环境中性能的标准化测试方法。这些评估标准对于未来极寒环境中的织物解决方案将是可靠和有效的。最后,介绍了实际案例研究,以展示如何在极寒环境中成功使用新兴技术。 关键词 极寒、保暖性能、织物、相变材料、碳纳米管
这是以下文章的同行评审版本:Shang,Jian; Yu,Wancheng;王,雷; Xie,Chuan; Xu,冰雹; Wang,Wenshuo;黄,Qiyao; Zheng,Zijian(2023)。金属玻璃 - 纤维织物:一种新型的灵活,超轻质和3D电流电池的收集器。高级材料,35(26),已在https://doi.org/10.1002/adma.202211748上以最终形式出版。本文可以根据Wiley使用自算版版本的条款和条件来将其用于非商业目的。未经Wiley的明确许可或根据适用立法的法定权利的明确许可,本文可能不会增强,丰富或以其他方式转化为衍生作品。版权声明不得删除,遮盖或修改。该文章必须链接到Wiley在Wiley在线图书馆上的记录版本,并且必须禁止第三方通过平台,服务和网站提供任何嵌入,框架或以其他方式提供其文章或页面。
美国政府根据其他交易协议编号HQ00342390025赞助的努力,美国高级功能面料,公司和政府。尽管有任何版权符号,但美国政府有权出于政府目的复制和分发转载。本文所包含的观点和结论是作者的观点,不应被解释为一定代表美国政府的官方政策或认可。使用,重复或披露应受到美国高级功能织物公司和政府之间HQ00342390025的限制。
摘要:关键词:防弹织物通常用作防弹衣,保护使用者免遭子弹袭击。根据预期风险程度和所需的防护等级,这些防弹衣各不相同。可以使用不同类型的材料和纤维来实现许多特性和不同级别的防护。材料的类型和数量会影响所需的防护。除了降低成本外,目前的市场正在寻求减轻这些织物的重量和厚度。在所有防弹防护服中,都有某种基本材料有助于以明显的方式阻挡子弹。目前,高分子量聚乙烯 (UHMWPE) 和芳纶纤维制成的材料被广泛用于此目的。芳纶纤维是通过升级弹道尼龙纤维而开发的,而 UHMWPE 则由聚酯开发而成。芳纶 29 和芳纶 149 是属于芳纶纤维的主要防弹衣材料。Dyneema 是另一种 UHMWPE。这种聚合物的分子式与普通聚乙烯相同,但由于其分子量非常高,比商用聚乙烯树脂高 10 到 100 倍,因此差异很大。本研究论文旨在研究 Kevlar 和 Dyneema 织物,以获得防弹织物的最佳功能特性。样品采用普通的 1/1 结构生产。生产出织物样品后,进行了测试以评估所生产样品的拉伸强度、抗紫外线、热导率、耐磨性、耐洗性、耐化学性、热性能,结果显示 Dyneema 织物在功能特性方面优于 Kevlar 织物,因为它具有许多使其成为防弹织物的特性。
医疗保健纺织品是病原体增殖的关键储层,要求紧急呼吁进行创新的干预措施。在这里,通过集成的“排斥,杀死和检测”功能引入了一类新的智能织物(SF),这是通过层次结构化的微粒,修改的纳米粒子和酸性响应性传感器来实现的。SF对气溶胶和基于液滴的病原体的传播具有显着的弹性,与各种耐药细菌,念珠菌和PHI6病毒的未涂层织物相比,减少的降低超过了99.90%。与未涂层的织物相比,涉及健康和受感染个体的体液的实验分别显示出99.88%和99.79%的临床尿液和粪便样本的实验。SF的比色检测能力以及机器学习(96.67%的精度)确保了可靠的病原体鉴定,从而促进了健康和感染的尿液和粪便污染的样品之间的准确分歧。sf有望在医疗机构中革新预防感染和控制,从而通过早期污染检测提供保护。
无论是有意产生声波还是试图减轻不必要的噪音,声音控制都是一个充满挑战和机遇的领域。这项研究探讨了传统织物作为声音发射器和抑制器的作用。当将丝绸织物连接到压电纤维致动器的单股上时,它会发出高达 70 dB 的声音。尽管织物结构复杂,但振动计测量结果显示其行为让人联想到经典的薄板。通过比较织物分析发现,相对于粘性边界层厚度的织物孔径会影响声发射效率。使用两种不同的机制证明了声音抑制。在第一种中,直接声干扰可将声音降低高达 37 dB。第二种依靠压电纤维平息织物振动,将振动波的幅度降低 95%,并将传输的声音衰减高达 75%。有趣的是,这种振动介导的抑制原则上可以无限减少声音。它还可以动态控制织物的声反射率,最高可提高 68%。130 μ m 丝织物的声音发射和抑制效率为服装、交通运输和建筑等各种应用中的声音控制提供了机会。
1个国家关键实验室的结构分析,优化和CAE软件的工业设备软件; National Engineering Research Center for Advanced Polymer Processing Technology , Zhengzhou University , Zhengzhou 450002 , China 2 China State Key Laboratory of Powder Metallurgy , Central South University , Changsha 410000 , China 3 School of Electronic Engineering , North China University of Water Resources and Electric Power , Zhengzhou 450046 , China 4 Complex Conditions of High-end Tire Technology Innovation Center , Shuguang Rubber Industry Research & Design Institute Co.,Ltd,Guilin 541004,中国5综合复合材料实验室,机械与土木工程系,诺森比亚大学,纽卡斯尔,纽卡斯尔,NE1 8st,英国第8届,英国6号,台风大学,台机科学学院,box 11099,TAIF 21944,沙特阿拉伯7 Shaanxi大分子科学与技术的主要实验室,化学与化学工程学院,西北理工大学,西北理工大学,西北710072,710072,中国化学和科学系,北中国北部科学系,北中国科学系,北中国。纳斯尔市Al-Azhar大学11884,开罗,埃及
微分段是确保任何数据中心的关键设计策略。本届会议描述了NXOS VXLAN EVPN织物中引入的新的微分段功能,以增强数据中心周围内的安全姿势。您将了解安全组,安全组ACL以及它们如何利用VXLAN组策略模型动态分类。参与者将学习如何将合同用于黑名单或白名单不需要的流量,并实施一个零信任模型,其中端点只能根据允许的策略与其他端点进行通信。
