摘要。传统的3D面模型基于带纹理的网格表示。最重要的模型之一是火焰(通过刻板模型和表达式学习的面孔),它会产生完全可控制的人脸的网格。不幸的是,此类模型在捕获几何和外观细节方面存在问题。与网格表示相反,神经辐射场(NERF)产生极其清晰的渲染。但是,隐式很难动画,并且不能很好地推广到看不见的表达。有效控制NERF模型以获得面部操纵并不是微不足道的。本文提出了一种名为Nerflame的新方法,该方法结合了NERF和火焰方法的优势。我们的方法使NERF具有高质量的渲染能力,同时对视觉外观完全控制,类似于火焰。与使用神经网络进行RGB颜色和体积密度建模的传统基于NERF的结构相反,我们的方法将火焰网格用作独特的密度体积。因此,颜色值仅存在于火焰网格的附近。我们的模型的核心概念涉及根据其与网格的接近度调整体积密度。此火焰框架无缝地融合到NERF体系结构中,以预测RGB颜色,从而使我们的模型能够明确并隐式地捕获RGB颜色。
我们提出了指示插道,这是一个将计算机视觉任务与Human指令保持一致的统一且通用的框架。与现有的方法相比,将先验知识整合并预先定义了每个视觉任务的输出空间(例如,构想和坐标),我们将各种视觉任务施加到人类直觉的图像操纵程序中,其输出空间是一个灵活的交互式像素空间。具体而言,该模型是建立在扩散过程的基础上的,并经过培训可以根据用户说明进行预测像素,例如将男人的左肩围绕红色或左右涂上蓝色面具。指示示例可以处理各种视觉任务,包括未识别任务(例如分割和关键点)和生成任务(例如编辑和增强)和在新颖数据集中胜过先前的方法。这代表了朝着视觉任务的通才建模界面迈出的坚实一步,在计算机视觉领域中推进了人工通用的intel。
摘要 — 目标:构建一个可以在单个受试者的小型 EEG 训练集上进行训练的 DL 模型提出了一个有趣的挑战,这项工作正试图解决这一挑战。具体来说,本研究试图避免长时间的 EEG 数据收集过程,并且不组合多个受试者的训练数据集,因为这会对分类性能产生不利影响,因为受试者之间的个体间差异很大。方法:使用大约 120 次 EEG 试验对定制的具有混合增强功能的卷积神经网络进行训练,每个模型仅针对一个受试者。结果:经过修改的具有混合增强功能的 ResNet18 和 DenseNet121 模型分别实现了 0.920(95% 置信区间:0.908,0.933)和 0.933(95% 置信区间:0.922,0.945)的分类准确率。结论:我们表明,尽管本研究使用的训练数据集有限,但与同一数据集上先前研究中的其他 DL 分类器相比,设计的分类器具有更高的分类性能。
本文研究了不同的用户界面(UI)设计如何影响用户对生成人工智能(AI)工具的信任。我们采用了OZ方法的向导来测试具有不同UI CHATGPT不同UI变化的三种工具的信任水平的实验。来自不同学科的九名志愿大学学生参加了会议。我们使用问卷来评估参与者与每个工具进行交互后以及与所有工具进行交互后对信任的看法。结果表明,参与者之间的信任水平受生成AI的UI设计的影响,尤其是Avatar设计和文本字体。尽管共享相同的文本源,但大多数参与者还是将CHATGPT评为最值得信赖的工具。结果还强调了对话界面在使用生成AI系统建立信任中的重要性,参与者表达了偏爱促进自然和引人入胜的互动的接口。该研究强调了UI对信任的重大影响,并旨在鼓励对生成AIS的更谨慎的信任。
摘要:本研究提出了一种新的梦境记录方法,该方法结合了非侵入式脑机接口 (BMI)、思维输入软件和生成式 AI 辅助多模态软件。该方法旨在将 REM 睡眠期间的意识过程升华到半意识状态,并产生用于思维输入的信号。我们概述了一个两阶段的过程:首先,使用生成式 AI 开发多模态软件来补充文本流并生成多媒体内容;其次,采用基于摩尔斯电码的打字方式来简化信号要求并提高打字速度。我们通过建议一种涉及植入 BMI 的用户的控制系统来优化非侵入式信号,从而应对非侵入式 EEG 的挑战。文献综述重点介绍了 BMI 打字、意识过程升华以及生成式 AI 在基于文本提示的思维输入方面的潜力方面的最新进展。
1. 简介 3D 建模是使用专门的计算机程序创建和修改三维对象的过程,该程序为用户提供了一组必要的工具。 3D 建模通常从基本形状(基元)开始,例如立方体、球体、圆环等。然后通过软件提供的不同功能修改这些形状。用户通常通过按下键盘上的组合键或从用户界面中选择它们来激活这些功能。如今,有许多功能强大的 3D 建模软件,可以创建 3D 资源、动画、特效和渲染图像。最受欢迎的付费应用程序是 Autodesk Maya、Autodesk 3ds Max 和 Cinema 4D。也有许多免费应用程序可用,但最受欢迎的应用程序是 Blender。Blender 是一个免费的开源 3D 计算机图形软件工具集。它用 C、C++ 和 Python 编程语言编写。Blender 基金会是一个负责 Blender 开发的非营利组织。 Blender 也是由社区开发的,社区创建了用 Python 编写的附加插件(称为附加组件)。附加组件为 Blender 添加了新功能或改进功能。由于 Blender 发展基金的成立,Blender 最近获得了 Epic Games、Nvidia 或 Intel 的大量资金支持。它使 Blender 基金会能够招募新的团队成员,从而更快地开发 Blender。
因此,下一个提到的结果遵循。基于通过实验测量左手和右手拇指运动过程中大脑电活动获得的EEG信号,我们获得了用于训练集合随机森林算法的输入和输出数据,该算法是通过Scikit-Learn库的软件工具实现的。使用Joblib库的软件工具,可以通过将N_JOBS HyperParameter的值设置为-1时在物理内核和计算机流程上训练集合的随机森林算法时并行化计算。基于DASK库的软件工具,将并行计算分布在群集计算机系统的物理核心及其流中,这使得组织高性能计算以训练集合随机森林算法。结果,根据质量指标:准确性,ROC_AUC和F1评估了创建算法,软件 - 硬件计算管道的质量。所有这些一起制作
结果:在将肥胖症患者与健康对照组进行比较时,α多样性在眼表面菌群的丰富度或均匀度没有明显差异(香农指数,p = 0.1003)。但是,β多样性突出了这两组的微生物群组成中的显着方差(Anosim,p = 0.005)。lefse分析表明,肥胖症患者的delftia,cutibacterium,cutibacterium,cutibacterium,culobacterium,caulobacteraceae,caulobacteraceae未分类,comamonas和卟啉症显着增加(p <0.05)。使用PICRUST2的预测分析强调了肥胖症患者的某些代谢途径的显着增强,特别是通过细胞色素P450(CYP450),脂质代谢和脂质代谢的代谢,尤其是异种疗法,脂质代谢和类似的受体信号途径(NOD) - 样型(NOD) - 样型(NOD)。
