被启用的系统是Tesla Megapack 2 XL。该系统已通过NFPA 855标准进行了彻底的测试和验证,用于安装固定储能系统,UL 9540储能系统(ESS)需求,UL 9540A电池储能系统(ESS)测试方法和UL 1973 TASTIC,用于电池用于固定,车辆辅助电源和轻型电力电源和轻型电气导轨(LER)的电池标准。这些测试包括单元级,模块水平和全单位级燃烧tesɵng,以观察安全元素的设计和故障事件。容纳Batery Systems的外壳是为了承受众多天气状况和其他外部因素而建立的,这些因素将在系统的寿命中提供寿命和安全性。Tesla Megapack 2 XL系统已被证明是一个可靠的Batery Storage系统,在其在全球范围内的许多地方,气候和歌剧中,它的广泛服务期间很少发生事件。设计元素已被纳入Batery系统,以预防和最大程度地减少Batery失败事件的影响。Tesla Megapack 2 XL配备了Mulɵ面对面的Batery Management System(BMS),该系统不断监视和控制系统中各种调节器,包括电池温度,电压和电荷水平。mulɵple层被合并到控制方案中,以提供冗余并确保维持opɵmalbaterycondiɵ。在故障过程中,这些系统可以电气分离细胞和模块,以防止层层化事件。在不太可能发生的变形事件中,超压Tesla Megapack 2 XL还配备了Sparker系统,作为一种附加的安全措施,它将以受控的方式点燃POTENTIES POTENTINE pOTENTIES,以防止发生变化。
yutian728@sina.com(X.Z.); txchenwei@sina.com(W.C.); yaohuaz@hotmail.com(y.z。); huss@fuwaihospital.org(s.h.); byf10784@rjh.com.cn(F.B.); fengxue@fuwaihospital.org(x.f.)收到:2024年8月7日;接受:2024年9月11日;在线发布:2024年9月12日; https://doi.org/10.59717/j.xinn-med.2024.100090©2024作者。这是CC BY-NC-ND许可证(http://creativecommons.org/licenses/by-nc-nd/4.0/)下的开放访问文章。引用:Xiao N.,ding Y.,Cui B.等,(2024)。导航肥胖症:对流行病学,病理生理,并发症和管理策略的全面综述。创新医学2(3):100090。肥胖是一种日益增长的全球健康危机,是由遗传,生物学,环境,行为,社会文化和经济因素的复杂相互作用驱动的。这项全面的综述封装了流行病学,病理生理机制和无数的健康并发症,例如心血管疾病(CVD),癌症,神经系统失败,呼吸疾病,呼吸疾病,消化道疾病,移动性障碍和心理压力。肥胖的病因是多方面的,涉及遗传易感性,环境影响,行为倾向和社会经济元素。肥胖的病理生理基础包括能量代谢的多方面方面,包括对食欲,葡萄糖,脂质和氨基酸代谢的调节。本综述还解决了肥胖在各种疾病中看似矛盾的作用,从而对这些现象提供了见解。肥胖的管理是多管齐下的,包括生活方式的修改,药理学干预措施和代谢手术。生活方式的改变是基本的,但是分子技术,数字技术,可穿戴设备和人工智能的进步正在为个人治疗和早期干预打开新的途径。药理治疗和代谢手术是有效的,但应明智地针对个体患者的需求量身定制。本综述强调了肥胖管理多个方法的重要性,旨在遏制不断升级的趋势并增强未来的干预措施和治疗方法。最终目标是综合当前的证据和创新策略,以有效地对抗肥胖。
与许多其他环境一样,海洋和沿海环境容易受到气候变化的影响(IPCC,2023年)。海洋占据了世界表面的70%,具有巨大的生物量生产潜力,但是气候压力源会影响生态系统功能以及水生生物的健康和生长。了解气候变化将如何影响海洋粮食生产,因此可能的适应策略至关重要。虽然木磨坊的产量稳定或下降,但据信水产养殖在粮食安全中起着越来越重要的作用,有助于供应高质量的粮食,以满足不断增长的地方和地区社区以及全球人口的需求(Aksnes等人,2017年,2017年; FAO,2024年)。因此,我们必须考虑不断变化的海洋环境如何支持可持续的粮食生产。海洋热含量的观察记录表明,海洋变暖正在加速(Cheng等,2019)。海洋热浪(MHW)是异常的温暖海水事件,可能会对海洋生态系统产生重大影响(Oliver等,2021)。全球海平面上升和沿海流量的预测显示,随着极端事件变得更加激烈,许多物种的脆弱性水平增加了(Voustdoukas等,2018)。但是,关于气候变化对粮食生产的影响有许多知识差距,从根本上讲,由于影响暴露,风险水平和适应潜力的因素有许多不同的因素(Falconer等,2022)。研究主题,例如“不断变化的海洋中的粮食生产潜力”,以增加该主题的重点和相关性。结果该研究主题包含七个原始研究文章和一个观点。两篇研究文章考虑捕获猎犬,而其他研究则关注水产养殖。研究包括一系列实验,分析和建模方法,以解决与整体研究主题保持一致的问题。对粮食产量增加的需求正在给全球野生种群带来额外的压力,而捕虫的开发过多是一个主要风险。挑战之一是影响人口水平的多种因素,Yulianto等人研究了这一研究主题。Yulianto等人专注于印度尼西亚的蓝色游泳蟹(Portunus pelagicus)。结合了一系列方法来评估填充性的可持续性,并通过多个方面的方法来改善实践,从而整合技术,政策,监管和监测。在对Bigeye Tuna(Thunnus obesus)的薄片的分析中,Ding等人。使用鱼类库存的预测模型来分析气候变化对捕获的影响。
一、介绍 国家标准与技术研究所(NIST)在指导人工智能(AI)系统的开发和部署方面发挥着至关重要的作用,这是行政命令14110规定的。随着人工智能技术越来越多地融入社会的各个领域,必须采用社会技术方法来制定人工智能安全、保障和可信的指南、标准和最佳实践。国家标准与技术研究所(NIST)根据人工智能行政命令提出的信息请求(RFI)为TRAILS(NIST-NSF法律和社会可信人工智能研究所)提供其独特见解提供了关键机会。通过整合人工智能技术、参与和治理,TRAILS 正在重塑人工智能实践,使其朝着实用、道德、以人权为中心的范式发展。在美国国家科学基金会和 NIST 的支持下,TRAILS 与主要大学和行业参与者合作,专注于开发值得信赖、负责并反映不同利益相关者观点的人工智能系统。由于我们的使命是确保人工智能系统不仅能增强人类能力,还能维护人类尊严和权利,因此我们强调增强人工智能可信度、用户赋权和包容性治理的方法。通过多学科研究和培训,TRAILS 致力于提出主流人工智能发展中被忽视的声音,确保人工智能治理的全面和包容性。这种方法对于制定人工智能安全、保障和可信度的指南、标准和最佳实践至关重要,从而实现技术进步和社会影响之间必要的、复杂的平衡。因此,TRAILS 的使命和专业知识与 NIST 在指导人工智能开发和部署方面的关键作用高度契合。为了确保人工智能技术的安全,随着它们在各个社会领域变得越来越普遍,NIST 应该采用社会技术框架。社会技术方法允许人工智能治理随着人工智能相关系统的变化而发展。TRAILS 研究人员进行的大量研究表明,采用社会技术方法对人工智能的必要性。这种方法除了考虑人工智能的技术方面,还考虑了社会和行为背景。这种更广泛的观念对于创建不仅技术先进而且对社会负责且符合道德规范的系统至关重要。通过整合法律、社会科学和计算机科学等不同领域的见解,TRAILS 研究强调了解决人工智能对社会的多重影响的重要性。这种全面的视角确保人工智能系统的开发能够敏锐地意识到其潜在的社会影响,符合我们共同的可信度、责任感和包容性目标。
2023 算子代数及其应用研讨会:与逻辑的联系,菲尔兹研究所,多伦多。2023 C ∗ -代数:张量积、近似和分类,E. Kirchberg 纪念,明斯特。2023 非交换谐波分析和量子信息,米塔格莱弗研究所。2023 算子代数的现代趋势,Ed Effiros 纪念,加州大学洛杉矶分校。2023 座谈会,加州大学圣地亚哥分校,概率算子代数研讨会,加州大学伯克利分校。2022 加拿大算子代数研讨会 (COSy),渥太华,全体会议发言人。2022 北英国泛函分析研讨会 (NBFAS),英国纽卡斯尔,全体会议演讲。2022 北方的非交换性,查尔姆斯大学,哥德堡,全体会议发言人。 2021 函数分析研讨会,加州大学洛杉矶分校。2021 量子概率和非交换谐波分析,莱顿洛伦兹中心。2021 算子研讨会,首尔国立大学。2021 国际算子理论与应用研讨会 (IWOTA),兰卡斯特,半全体会议。2021 团体聚会 C*-代数庆祝 Siegfried Echterhoff 60 岁生日,明斯特。2021 算子代数暑期学校,渥太华大学。讲座系列(4 × 60 分钟)。2021 算子代数特别周,华东师范大学算子代数研究中心,上海。2021 量子信息论中的非局部博弈,AIM 研讨会。2019 C*-代数研讨会,Oberwolfach 数学研究所。 2019 多面 Connes 嵌入问题,班夫 BIRS 研讨会。2019 巴塞罗那 CRM 几何、拓扑和代数高级课程(2 × 60 分钟)。2019 专题计划算子代数、群和 QIT 的应用,ICMAT,Lect 系列 5 × 90 分钟。2019 数学图像语言研讨会,哈佛大学。2019 二十一世纪的算子代数,宾夕法尼亚大学,费城。2019 悉尼的子因子:算子代数、表示论、量子场论,新南威尔士大学悉尼。2019 Connes 嵌入问题和 QIT,奥斯陆大学冬季学校,讲座系列(4 x 60 分钟)。2018 2018 概率算子代数研讨会,加州大学伯克利分校。2018 座谈会,隆德大学。2017 量子信息理论中的专题程序分析,IHP Paris,讲座系列(2 x 90 分钟)。2017 C ∗ -代数中的青年女性(YMC ∗ A),哥本哈根大学,主讲师。2016 当前量子信息理论中的数学方面,韩国大田。2015 乔治布尔数学科学会议,科克。2015 加拿大算子代数研讨会(COSy),滑铁卢,全体发言人。2014 加拿大算子代数研讨会(COSy),多伦多,全体发言人。2013 Banach 代数及其应用,查尔姆斯大学,哥德堡,全体发言人。 2013 年算子空间、谐波分析和量子概率研讨会,马德里。2012 年北英泛函分析研讨会 (NBFAS),英国牛津,讲座系列(3x 60 分钟)。2012 量子信息理论中的算子结构,BIRS,班夫。2011 EMS-RSME 联合数学周末,毕尔巴鄂。2011 C ∗ -代数和相关主题会议,RIMS,京都。2011 大平原算子理论研讨会 (GPOTS),亚利桑那州坦佩,全体会议发言人。
时机和管理。兽医记录,175(1),19。https:// doi。org/10.1136/vr.102327 Bergstrom,K。S. B.,&Xia,L。(2013)。粘蛋白 - o-聚糖及其在肠内稳态中的作用。糖生物学,23(9),1026 - 1037。https:// doi.org/10.1093/glycob/glycob/cwt045 Blokker,B.,Bortoluzzi,Bortoluzzi,C.,Iaconis,C.,Iaconis,C. (2022)。在肠内挑战下对肠肝脏健康标志物的新型精密生物评估和肉鸡的生长表现。动物:MDPI,12(19),2502。https://doi.org/10的开放访问期刊。3390/ani12192502 Bolyen,E.,Rideout,J.R.,Dillon,M.R.,Bokulich,N.A. A.,Brislawn,C.J.,Brown,C.T.,Callahan,B.J.,Caraballo -Rodríguez,A.M.,Chase,J.,…Caporaso,J.G。(2019)。使用Qiime 2。自然生物技术,37(8),852 - 857。https://doi.org/10.10.1038/s41587-019-019-019-019-0209-9 Bortoluzzi,C.,Tamburini(2023)。微生物组调节,微生物组蛋白代谢指数和补充具有精度生物的肉鸡的生长性能。家禽科学,102(5),102595。https://doi.org/10.1016/j.psj.2023.102595 Bright,A。,A。,&Johnson,E。A.(2011)。在商业自由范围内植物中窒息:初步研究。A.,&Holmes,S。P.(2016)。(2013)。(2020)。(2018)。兽医记录,168(19),512。https://doi.org/10.1136/vr.c7462 Broecker,F.,Martin,C。E.合成脂肪甲酸聚糖是潜在的候选疫苗,可防止艰难梭菌感染。细胞化学生物学,23(8),1014 - 1022。https://doi.org/10.1016/j.chembiol.2016.07.009 Callahan,B.J.,McMurdie,P.J.dada2:来自Illumina Amplicon数据的高分辨率样本推断。自然方法,13(7),581 - 583。https://doi.org/10.1038/nmeth.3869Corthésy,B。粘膜表面分泌IgA的多相功能。免疫学领域,4,185。https://doi.org/10.3389/fimmu.2013.00185 Falker- Gieske,C.,Mott,A.,Preuß,S.,S.,Franzenburg,S.分析脑转录组的分析母鸡分发作用于羽毛啄食的线条。BMC基因组学,21(1),595。https://doi.org/10.1186/s12864-020-07002-1 Gornatti- C. D.鸡和火鸡的坏疽性皮炎。兽医诊断调查杂志,30(2),188 - 196。https://doi.org/10.1177/ 1040638717742435 de Gussem,M。(2010)。肉鸡和火鸡中细菌性肠炎的宏观评分系统。WVPA会议01/04/2010。Merelbeke,比利时。 Herbert,G。T.,Redfearn,W。D.,Brass,E.,Dalton,H。A.,Gill,R.,Brass,D.,Smith,C.,Rayner,A.C。,&Asher,L。(2021)。 兽医记录,188(12),E245。Merelbeke,比利时。Herbert,G。T.,Redfearn,W。D.,Brass,E.,Dalton,H。A.,Gill,R.,Brass,D.,Smith,C.,Rayner,A.C。,&Asher,L。(2021)。 兽医记录,188(12),E245。Herbert,G。T.,Redfearn,W。D.,Brass,E.,Dalton,H。A.,Gill,R.,Brass,D.,Smith,C.,Rayner,A.C。,&Asher,L。(2021)。兽医记录,188(12),E245。在反复的窒息爆发中躺下母鸡的极端拥挤。https://doi.org/10.1002/vetr.245 Jacquier,V.,Walsh,M.C.,Schyns,G.,Clypool,J.,Blokker,B.(2022)。<精确生物对生长性能,福利指标,阿曼尼亚产量和肉鸡质量的审判。动物:MDPI,12(3),231。Kobierecka,P。A.,Wyszy可能J.和Jagustyn -Krynicka,E。K.(2017)。乳酸杆菌的体外特征。菌株从鸡肉挖掘拖拉段及其在抑制弯曲杆菌定殖的作用中的作用。微生物学,6(5),E0https://doi.org/10.1002/mbo3.512 Marcobal,A.,Southwick,A.M.,Earle,K.A。,&Sonnnburg,J.L。(2013)。 精致的口感:肠道中宿主聚糖的细菌消耗。https://doi.org/10.1002/mbo3.512 Marcobal,A.,Southwick,A.M.,Earle,K.A。,&Sonnnburg,J.L。(2013)。精致的口感:肠道中宿主聚糖的细菌消耗。
雅典这座标志性城市历史悠久、文化底蕴深厚、创新意识强,是激发创造力、促进合作和建立持久联系的理想场所。雅典是民主、西方文明、奥运会、戏剧和主要数学原理的发源地,拥有丰富的文化遗产和知识遗产,不断激励和吸引着世界。正如英国诗人约翰·弥尔顿所说,雅典是“希腊之眼,艺术和雄辩之母”。这一遗产可以追溯到历史上,自古以来,希腊一直是科学研究和技术创新的中心。毕达哥拉斯、阿基米德、柏拉图和亚里士多德等思想巨匠共同塑造了西方思想的基础。哲学家、科学家、数学家、医士甚至牧师汇聚一堂,将他们的见解结合起来,形成了一个统一的知识体系。从希波克拉底强调观察、诊断和伦理,到盖伦开创性的解剖学研究,不同领域的知识汇聚为医学和科学的重要发展铺平了道路。我们很高兴能在一个对科学、医学和技术的贡献如此多方面和持久的地方举办今年的研讨会。我们很高兴看到今年提交的四页论文和一页摘要的多样性和跨学科性,创下了历史新高,来自全球 49 个国家。我们编制了一个全面的技术计划,其中包括世界一流的口头和海报会议、主题演讲和全体会议、特别会议、教程、挑战、展览和演示、行业会议和创业演讲,为期四天的会议体验将通过我们的特别社交活动得到丰富。ISBI 2024 将涵盖与医学图像计算相关的所有领域,同时将重点扩展到生物医学成像领域的新兴人工智能 (AI) 前沿。今年的激动人心的计划包括 241 个口头报告和 717 个海报报告,主题涵盖前沿研究、创新工程解决方案和现实世界的临床应用。选定的 ISBI 2024 论文的扩展版本将被邀请提交给顶级期刊的特刊,包括 IEEE 医学成像学报:医学成像基础模型进展特刊;计算与结构生物技术杂志:智能医院 - 临床环境中医学成像 AI 的采用和信任特刊;医学图像分析杂志:组织病理学/生物成像特刊。其他特刊将刊登在计算机视觉与图像理解 (CVIU) 和生物医学成像机器学习 (MELBA) 杂志上。四位世界知名的 AI、生物医学成像和机器学习专家将发表四场发人深省的全体会议演讲。Anant Madabhushi 将以关于医疗保健领域人工智能的演讲开启全体会议,讨论其回顾性和前瞻性验证;Joseph Sifakis 博士将讨论人工智能的现状和未来发展轨迹,强调人工智能引起的风险、评估和监管;Katherine Ferrara 博士将分享她在个性化成像和治疗诊断方面的专业知识;Francis Bach 博士将介绍关于去噪扩散模型的另一种观点。第一天的活动以小组讨论结束,小组讨论深入探讨将人工智能研究转化为临床实践的复杂过程,特别是在生物医学成像领域。我们尊敬的跨学科小组成员(N. Paragios、C. Daskalakis、A. Kelekis、M. Mallet、G. Spigelman、L. Zöllei)将探讨关键主题,从解决数据管理和算法开发中的挑战到确保技术转让和扩大规模以及临床部署的资金,从而成功将 AI 技术整合到医疗保健中。今年,我们对会议形式进行了重大改变,从传统的并行临床日形式转变为两个临床焦点会议,这两个会议位于技术计划的核心,没有任何其他会议同时进行。这一选择符合我们对更广泛的互动、全面报道和观众参与的承诺。第一场会议将重点讨论肿瘤学综合精准诊断中的成像和 AI 机会。 MacLean Nasrallah 博士、Vassilis Gorgoulis 博士和 Jacob Visser 博士将就肿瘤学中临床和生物学相关问题的选择提供观点,这些问题的解决方案可通过成像和人工智能来解决,目标是通过整合来自多个生物标志物的数据来改善诊断和预后。第二场会议将讨论人工智能在神经退行性疾病(如阿尔茨海默病和神经精神疾病)中的应用。利用这些例子,Magdalini Kosta-Tsolaki 博士、Ilya Nasrallah 博士和 Paris Lalousis 博士将强调将基于成像的人工智能转化为精准诊断的挑战和机遇。六个特别会议专门为医疗需求而定制,旨在介绍开创性的工程解决方案:生物医学图像的简单复杂数据;使用 3D 电子显微镜对细胞内的分子进行成像;超越常规的 MRI:开创性的进展特别是在生物医学成像领域。我们尊贵的跨学科小组成员(N. Paragios、C. Daskalakis、A. Kelekis、M. Mallet、G. Spigelman、L. Zöllei)将探讨关键主题,从解决数据管理和算法开发中的挑战到确保技术转让和扩大规模以及临床部署的资金,从而成功将 AI 技术整合到医疗保健中。今年,我们对会议形式进行了重大改变,从传统的并行临床日形式转变为两个临床焦点会议,这两个会议位于技术计划的核心,没有任何其他会议同时进行。这一选择符合我们对更广泛互动、全面报道和观众参与的承诺。第一场会议将重点讨论肿瘤学综合精准诊断中的成像和 AI 机会。 MacLean Nasrallah 博士、Vassilis Gorgoulis 博士和 Jacob Visser 博士将就肿瘤学中临床和生物学相关问题的选择提供观点,这些问题的解决方案可通过成像和人工智能来解决,目标是通过整合来自多个生物标志物的数据来改善诊断和预后。第二场会议将讨论人工智能在神经退行性疾病(如阿尔茨海默病和神经精神疾病)中的应用。利用这些例子,Magdalini Kosta-Tsolaki 博士、Ilya Nasrallah 博士和 Paris Lalousis 博士将强调将基于成像的人工智能转化为精准诊断的挑战和机遇。六个特别会议专门为医疗需求而定制,旨在介绍开创性的工程解决方案:生物医学图像的简单复杂数据;使用 3D 电子显微镜对细胞内的分子进行成像;超越常规的 MRI:开创性的进展特别是在生物医学成像领域。我们尊贵的跨学科小组成员(N. Paragios、C. Daskalakis、A. Kelekis、M. Mallet、G. Spigelman、L. Zöllei)将探讨关键主题,从解决数据管理和算法开发中的挑战到确保技术转让和扩大规模以及临床部署的资金,从而成功将 AI 技术整合到医疗保健中。今年,我们对会议形式进行了重大改变,从传统的并行临床日形式转变为两个临床焦点会议,这两个会议位于技术计划的核心,没有任何其他会议同时进行。这一选择符合我们对更广泛互动、全面报道和观众参与的承诺。第一场会议将重点讨论肿瘤学综合精准诊断中的成像和 AI 机会。 MacLean Nasrallah 博士、Vassilis Gorgoulis 博士和 Jacob Visser 博士将就肿瘤学中临床和生物学相关问题的选择提供观点,这些问题的解决方案可通过成像和人工智能来解决,目标是通过整合来自多个生物标志物的数据来改善诊断和预后。第二场会议将讨论人工智能在神经退行性疾病(如阿尔茨海默病和神经精神疾病)中的应用。利用这些例子,Magdalini Kosta-Tsolaki 博士、Ilya Nasrallah 博士和 Paris Lalousis 博士将强调将基于成像的人工智能转化为精准诊断的挑战和机遇。六个特别会议专门为医疗需求而定制,旨在介绍开创性的工程解决方案:生物医学图像的简单复杂数据;使用 3D 电子显微镜对细胞内的分子进行成像;超越常规的 MRI:开创性的进展第二场会议将讨论人工智能在神经退行性疾病(如阿尔茨海默病和神经精神疾病)中的应用。利用这些例子,Magdalini Kosta-Tsolaki 博士、Ilya Nasrallah 博士和 Paris Lalousis 博士将强调基于成像的人工智能在精准诊断中的应用所面临的挑战和机遇。会议还特别安排了六场会议,旨在展示满足医疗需求的开创性工程解决方案:生物医学图像的简单复杂数据;使用 3D 电子显微镜对细胞内的分子进行成像;超越常规的 MRI:开创性的进展第二场会议将讨论人工智能在神经退行性疾病(如阿尔茨海默病和神经精神疾病)中的应用。利用这些例子,Magdalini Kosta-Tsolaki 博士、Ilya Nasrallah 博士和 Paris Lalousis 博士将强调基于成像的人工智能在精准诊断中的应用所面临的挑战和机遇。会议还特别安排了六场会议,旨在展示满足医疗需求的开创性工程解决方案:生物医学图像的简单复杂数据;使用 3D 电子显微镜对细胞内的分子进行成像;超越常规的 MRI:开创性的进展