CD8 (sc-1177,Santa Cruz Biotechnology)、抗 NK1.1 (14-5941-82C,eBioscience) 和抗 F4/80 (sc- 377009,Santa Cruz Biotechnology) 抗体。免疫组织化学 (IHC) 使用 MACH4 通用 HRP 聚合物检测系统 (BRI4012H,Biocare Medical) 和苏木精溶液 Gill II (GHS232,Sigma-Aldrich) 进行,如前所述 [24],最后,使用 Aperio ScanScope AT (数字幻灯片扫描仪,Leica Biosystems Inc) 获取全幻灯片数字图像。使用 NIH ImageJ (版本 1.52p) 进行定量分析,并以相对光密度表示。此外,通过使用抗 IFN-γ(505802,
1 ,波兰2-093华沙的卢德维卡·巴斯图拉大学1街2号,波兰2 - 02-093波兰技术研究所,波兰科学学院,Pawinskiego 5B街,5B街5B街,02-106 Warsaw,Warsaw,Warsaw,波兰3号,波兰,波兰33 wyspianskiego 27,50-370波兰弗罗克瓦劳4物理学学院,华沙大学,卢德维卡·巴斯德拉(Ludwika Pasteura)5,02-093华沙,波兰5,波兰5化学技术和工程学院,科学与技术大学,科学与技术大学,Semarinyjna 3,85-326 bydgoszccscc, magdalena.warczak@pbs.edu.pl(M.W。) 6波兰科学学院物理化学研究所,Kasprzaka 44/52,01-224波兰华沙 *通信:mosial@ippt.pan.pl(M.O. ) ); aprego@ippt.pan.pl(A.P.) †这些作者为这项工作做出了同样的贡献。,波兰2-093华沙的卢德维卡·巴斯图拉大学1街2号,波兰2 - 02-093波兰技术研究所,波兰科学学院,Pawinskiego 5B街,5B街5B街,02-106 Warsaw,Warsaw,Warsaw,波兰3号,波兰,波兰33 wyspianskiego 27,50-370波兰弗罗克瓦劳4物理学学院,华沙大学,卢德维卡·巴斯德拉(Ludwika Pasteura)5,02-093华沙,波兰5,波兰5化学技术和工程学院,科学与技术大学,科学与技术大学,Semarinyjna 3,85-326 bydgoszccscc, magdalena.warczak@pbs.edu.pl(M.W。) 6波兰科学学院物理化学研究所,Kasprzaka 44/52,01-224波兰华沙 *通信:mosial@ippt.pan.pl(M.O. ) ); aprego@ippt.pan.pl(A.P.) †这些作者为这项工作做出了同样的贡献。,波兰2-093华沙的卢德维卡·巴斯图拉大学1街2号,波兰2 - 02-093波兰技术研究所,波兰科学学院,Pawinskiego 5B街,5B街5B街,02-106 Warsaw,Warsaw,Warsaw,波兰3号,波兰,波兰33 wyspianskiego 27,50-370波兰弗罗克瓦劳4物理学学院,华沙大学,卢德维卡·巴斯德拉(Ludwika Pasteura)5,02-093华沙,波兰5,波兰5化学技术和工程学院,科学与技术大学,科学与技术大学,Semarinyjna 3,85-326 bydgoszccscc, magdalena.warczak@pbs.edu.pl(M.W。) 6波兰科学学院物理化学研究所,Kasprzaka 44/52,01-224波兰华沙 *通信:mosial@ippt.pan.pl(M.O. ) ); aprego@ippt.pan.pl(A.P.) †这些作者为这项工作做出了同样的贡献。,波兰2-093华沙的卢德维卡·巴斯图拉大学1街2号,波兰2 - 02-093波兰技术研究所,波兰科学学院,Pawinskiego 5B街,5B街5B街,02-106 Warsaw,Warsaw,Warsaw,波兰3号,波兰,波兰33 wyspianskiego 27,50-370波兰弗罗克瓦劳4物理学学院,华沙大学,卢德维卡·巴斯德拉(Ludwika Pasteura)5,02-093华沙,波兰5,波兰5化学技术和工程学院,科学与技术大学,科学与技术大学,Semarinyjna 3,85-326 bydgoszccscc, magdalena.warczak@pbs.edu.pl(M.W。) 6波兰科学学院物理化学研究所,Kasprzaka 44/52,01-224波兰华沙 *通信:mosial@ippt.pan.pl(M.O. ) ); aprego@ippt.pan.pl(A.P.) †这些作者为这项工作做出了同样的贡献。,波兰2-093华沙的卢德维卡·巴斯图拉大学1街2号,波兰2 - 02-093波兰技术研究所,波兰科学学院,Pawinskiego 5B街,5B街5B街,02-106 Warsaw,Warsaw,Warsaw,波兰3号,波兰,波兰33 wyspianskiego 27,50-370波兰弗罗克瓦劳4物理学学院,华沙大学,卢德维卡·巴斯德拉(Ludwika Pasteura)5,02-093华沙,波兰5,波兰5化学技术和工程学院,科学与技术大学,科学与技术大学,Semarinyjna 3,85-326 bydgoszccscc, magdalena.warczak@pbs.edu.pl(M.W。) 6波兰科学学院物理化学研究所,Kasprzaka 44/52,01-224波兰华沙 *通信:mosial@ippt.pan.pl(M.O. ) ); aprego@ippt.pan.pl(A.P.) †这些作者为这项工作做出了同样的贡献。,波兰2-093华沙的卢德维卡·巴斯图拉大学1街2号,波兰2 - 02-093波兰技术研究所,波兰科学学院,Pawinskiego 5B街,5B街5B街,02-106 Warsaw,Warsaw,Warsaw,波兰3号,波兰,波兰33 wyspianskiego 27,50-370波兰弗罗克瓦劳4物理学学院,华沙大学,卢德维卡·巴斯德拉(Ludwika Pasteura)5,02-093华沙,波兰5,波兰5化学技术和工程学院,科学与技术大学,科学与技术大学,Semarinyjna 3,85-326 bydgoszccscc, magdalena.warczak@pbs.edu.pl(M.W。)6波兰科学学院物理化学研究所,Kasprzaka 44/52,01-224波兰华沙 *通信:mosial@ippt.pan.pl(M.O. ) ); aprego@ippt.pan.pl(A.P.) †这些作者为这项工作做出了同样的贡献。6波兰科学学院物理化学研究所,Kasprzaka 44/52,01-224波兰华沙 *通信:mosial@ippt.pan.pl(M.O.); aprego@ippt.pan.pl(A.P.)†这些作者为这项工作做出了同样的贡献。
通过简单的合成方法利用基于地球丰富元素的低成本,高活性和鲁棒的氧气进化反应(OER)电催化剂,这对于通过水电解而对绿色水力产生而言至关重要。在这项工作中,Nio,Co 3 O 4和Nico 2 O 4纳米颗粒层具有相同的表面形态,通过简单的喷雾热解方法在相同的沉积条件下制备了相同的表面形态,并且相对研究了其OER活性。在所有这三个电催化剂中,NICO 2 O 4显示了420 mV的最低电位,以驱动基准电流密度为10 mA cm -2和最小的Tafel斜率(84.1 mV dec -1),这些密度与基准标准的商业RUO 2电催化剂的OER性能相当。NICO 2 O 4的高OER活性归因于Co和Ni原子之间电子性质的协同作用和调制,这大大降低了驱动OER活动所需的过电位。因此,据信,通过这种简单方法合成的NICO 2 O 4将是一种竞争性候选者作为工业电催化剂,具有高效率和低成本的大规模绿色氢生产,这是通过水电解产生的。
外延生长时,氧化膜必须生长在晶体衬底上。这些要求极大地限制了它们的适用性,使得我们无法制备多种人工多层结构来研究薄膜及其界面处出现的突发现象[2],也无法制造柔性器件并单片集成到硅中。[3–5] 人们致力于开发将功能氧化膜与生长衬底分离的程序,以便能够自由操作它。这些方法包括机械剥离[6]、干法蚀刻[7,8]和湿化学蚀刻[9,10]。在化学蚀刻程序中,使用牺牲层(位于衬底和功能氧化物之间)似乎是一种快速且相对低成本的工艺。为了使这种方法成功,牺牲层应将外延从衬底转移到所需的氧化物,经受功能氧化物的沉积过程,并通过化学处理选择性地去除,从而可以恢复原始的单晶衬底。 (La,Sr)MnO 3 已被证明可以通过酸性混合物进行选择性蚀刻,从而转移单个外延 Pb(Zr,Ti)O 3 层 [11] 和更复杂的结构,例如 SrRuO 3 /Pb(Zr,Ti)O 3 /SrRuO 3 。 [12] 最近,水溶性 Sr3Al2O6(SAO)牺牲层的使用扩大了独立外延钙钛矿氧化物层(SrTiO3、BiFeO3、BaTiO3)[13–15] 和多层(SrTiO3/(La,Sr)MnO3)[16] 的家族,这些层可进行操控,从而开辟了一个全新的机遇世界。[5,10,17] 制备此类结构的沉积技术也是需要考虑的关键因素,不仅影响薄膜质量,还影响工艺可扩展性。虽然分子束外延和脉冲激光沉积等高真空沉积技术是生产高质量薄膜的成熟技术[1,18–20],但溶液处理和原子层沉积等可实现低成本生产的替代工艺正引起人们的兴趣。[21,22]
透明植入式设备将神经记录和光学模式相结合,在神经科学和生物医学工程领域引起了广泛关注。用于电生理学的不透明金属电极阵列会阻碍光学成像并导致光电伪影,使其难以与光遗传学相结合。本文介绍了一种无光电伪影、高导电性和透明的聚(3,4-乙烯二氧噻吩)聚苯乙烯磺酸盐 (PEDOT:PSS) 电极阵列,作为有前途的神经植入物。与应用于植入工具的其他透明材料相比,本研究开发的技术通过低成本、超简便的方法提供了透明的神经接口。由于采用了简单的乙二醇浸渍工艺,该设备表现出优于其他研究的光学、机械和电气特性。通过将其光刺激效率和光电伪影程度与传统的薄金电极在体外和体内进行比较,突出了该设备的性能。该平台可以比任何其他候选材料更有效地组装透明神经接口,因此具有许多潜在的应用。
本研究使用来自西洋紫草叶和茎的提取物,旨在提供一种简单且环保的方法来合成银纳米粒子 (AgNPs)。此外,该研究将检查提取物的天然产物化学性质,并评估其可能的抗炎、抗糖尿病、抗氧化和抗糖化作用。通过紫外-可见光谱、傅里叶变换红外和扫描电子显微镜 (SEM) 对银纳米粒子进行了表征。在标准条件下,使用各种方法进行抗氧化、抗糖尿病和抗炎活性。观察到的视觉颜色变化表明存在合成的 AgNPs。通过表面等离子体共振扫描验证了银纳米粒子的产生,结果显示纳米粒子在 400 纳米处具有吸收峰。此外,SEM 结果提供了对 AgNPs 尺寸分布的洞察,范围从 22 nm-68 nm,平均 43.66 nm。研究表明,西洋参叶和茎提取物具有生产具有抗氧化、抗炎、抗糖尿病和抗糖化作用的 AgNPs 的潜力。AgNPs 可能对糖尿病治疗和管理药物的开发很有价值。
1 Quaid-i-azam大学伊斯兰堡化学系,伊斯兰堡,巴基斯坦,巴基斯坦2号药学系,巴哈瓦尔布尔伊斯兰大学药学院,巴哈瓦尔布尔伊斯兰大学,巴哈瓦尔布尔,巴基斯坦,3个,基础医生,数学和人类,dawoood and Dawoood and Trace and Technology ofernace and Technology of Ergentering and Technology of Ergineing and Technoical of Ergineing and Technogiation and Teprion of Ergineing and Technoical of Ergine and Technoce沙特阿拉伯利雅得国王大学药学学院化学学院化学学院,萨特阿拉伯利雅得国王萨特大学科学学院5号生物化学系,巴哈瓦尔布尔药学学院6,巴哈瓦尔布尔医学院,巴哈瓦尔邦巴基斯坦,伊斯兰堡大学伊斯兰堡大学化学系8,巴基斯坦,伊斯兰堡,伊斯兰堡,9,物理学系,工程学院,哈塞特普大学,安卡拉,土耳其安卡拉,土耳其10号,密西西比州立大学,斯塔克维尔10号化学系
有机无机杂交光催化剂用于水分割的利用引起了显着的关注,因为它们能够结合两种材料的优势并产生协同效应。但是,由于对这两个组成部分之间的相互作用以及其准备过程的复杂性的相互作用有限,它们仍然远非实际应用。在此,通过将糖化的共轭聚合物与TIO 2-x介孔球相结合,以制备高效率杂种杂种光催化剂。与亲水性寡醇(乙二醇)侧链的共轭聚合物的功能不仅可以促进结合聚合物在水中的分散体,而且还可以促进与TIO 2 -X形成稳定的异质结纳米颗粒的相互作用。在35.7 mmol H-1 g-1的365 nm时,在PT共同催化剂存在下,氢的量子产率为53.3%,氢的演化速率为35.7 mmol H-1 g-1。基于飞秒瞬态吸收光谱和原位分析的高级光物理研究,XPS分析揭示了II型异质结接口处的电荷转移机制。这项工作表明了糖化聚合物在构建用于光催化氢生产的杂交异质结中的前景,并深入了解了这种异质结光催化剂的高光催化性能。
和现代建筑建立在更普遍的有机LED(OLEDS)的基础上。[1,3-5]在整个可见频谱中具有电荷平衡和高效率仍然远离最佳的QD,QD通常被用作颜色 - 纯发光下调转换器,用于在背光无机LED中显示。[2,6]虽然对设备档案的研究对于将来的开发至关重要,但许多小组也在探索QD的替代材料,以降低成本,最大程度地减少丰富的问题并限制毒性。[7-9]最初在2012年作为照片伏特的有前途的材料出现,[10]卤化物钙钛矿对于几乎所有光启动器件(例如光电探测器)具有巨大的潜力,例如光电探测器,[11]激光器,[12]和LED。[13–15]卤化物钙钛矿NC对于光发射特别有利,其发射波长可以通过组合和形态在整个可见范围内进行调谐,[16]超高的量子产量(Qys)(Qys),即使接近统一,甚至接近统一,[17-19],[17-19]和合成,通常是actile and facile conigile facile cookile cookile,sable,便宜,易于扩展。[20,21]相比之下,传统QD通常需要Inorranic Core-shell结构,高前体纯度和复杂的,乏味的合成以获得令人印象深刻的光学特性。[22]但是,钙钛矿NC缺乏足够的稳定性
Study of Optoelectronic Properties and Density Functional Theory of Kesterite Cu 2 ZnSnS 4 Thin Film Grown by Facile Solution Growth Technique Nanasaheb P. Huse 1,* Harshal P. Borse, 2 Gourisankar Roymahapatra 3 and Ramphal Sharma 4 Abstract Facile solution growth technique was implemented to deposit nanostructured Cu 2 ZnSnS 4 (CZTS) Kesterite薄膜到玻璃基板上。AR级硫酸锌,硫酸铜,硫酸盐和硫酸盐用于制备前体溶液。种植的CZTS薄膜被表征为研究其结构,光学和电性能。CZTS薄膜的Kesterite结构已从X射线衍射模式中得到证实。计算出的晶格参数与标准报告的值非常吻合。光学性质显示kesterite czts膜在可见区域具有较高的吸收。从TAUC的图中获得带隙能量,该图被发现为〜1.7 eV,位于太阳光谱具有较高辐照度的范围内导致较高的光吸收。理论带结构是通过基于GGA近似的DFT计算获得的,GGA近似显示了直接带隙约为0.6 eV。i-V测量已在黑暗中进行,并在光线照明下进行,导致在黑暗和光照射下产生高光电流。计算了光敏性和光响应率,发现〜60%和70 µA/w,证明了其对太阳能电池的有希望的候选人资格。