左:眼睛跟踪器摄像机拾取用户的目光。右:使用目光来控制打字应用程序。已经提出了几种遏制MIDAS触摸问题的方法。一种方法是选择注视,但不能激活接口元素。一个典型的例子是使用自愿眨眼来确认基于目光的选择。,但这假定眼睛始终是自愿的。第二种方法是测量用户眼睛的总时间在接口元素中(“ dell Time”)(Jacob和Stellmach,2016年)。如果停留时间超过一定的阈值值,则该元素将被激活。选择阈值大于典型的眼固定持续时间。这种方法的问题是没有固定的固定时间表明用户的意图。第三种方法是具有凝视驱动的光标(“凝视鼠标”)并进行鼠标点击以确认选择(Kasprowski等,2016)。,但这不是免提解决方案。第四种方法是双重视线方法(Mohan等,2018),在这种情况下,用户凝视着他/她想要
摘要。多年来,机器人一直为人类带来巨大的用途。在人体无法按需求运作的情况下,机器人的功能在这些情况下非常有效。脑电图 (EEG) 控制的手部助手利用 EEG 信号和脑机接口 (BCI)。使用 Emotiv Insight 耳机从大脑获取 EEG 信号,然后对信号进行处理和特征提取,然后对信号进行调节,因为它是具有加性噪声的低幅度信号。使用小波变换对模拟信号进行信号处理。小波变换将有助于从模拟信号中提取信息。然后为信号分配签名以执行专用任务。滤波信号被提供给 Arduino Uno 的模拟引脚。借助 Arduino Uno 上内置的 ADC,数字数据也可在数字引脚上获得。然后通过 MATLAB 访问 Arduino 板。在不久的将来,如果它得到类似的输入,它将准确理解要执行什么操作。此外,机器人手部助手可以根据我们的需要进行操作。
这个公理并没有明确地宣称意识在时间上是离散的。3 个时间的确切值并不重要,重要的是不存在“叠加的时间体验”,这听起来可能是一个奇怪而琐碎的公理,但它的相关性将在后面更加清晰地显现出来。
虽然在将细菌行为与电极联系起来方面取得了令人瞩目的进展,但促进合成生物学进步的一个有吸引力的观察结果是,细菌菌落的生长可以通过随时间变化的阻抗变化来确定。在这里,我们通过调节带电代谢物积累的工程群体动态将合成生物学与微电子技术相结合。我们通过群体控制电路展示了细菌对重金属反应的电检测。然后,我们将这种方法应用于同步遗传振荡器,从工程细菌中获得振荡阻抗曲线。最后,我们将电极阵列小型化以形成“细菌集成电路”,并展示其作为遗传电路接口的适用性。这种方法为合成生物学、分析化学和微电子技术的新进展铺平了道路。
电气电子工程师协会,3 Park Avenue,纽约,NY 10016-5997,美国版权所有 © 2020 电气电子工程师协会,保留所有权利。2020 年 2 月出版。美国印刷。IEEE 是美国专利商标局的注册商标,归电气电子工程师协会所有。PDF:ISBN 978-1-5044-6496-3 STDVA24082 IEEE 禁止歧视、骚扰和欺凌。有关更多信息,请访问 http://www.ieee.org/web/aboutus/whatis/policies/p9-26.html。未经出版商事先书面许可,不得以任何形式、在电子检索系统或其他方式复制本出版物的任何部分。要订购 IEEE 出版社出版物,请致电 1-800-678-IEEE。 IEEE 标准和标准相关产品列表可在以下网址找到:http://standards.ieee.org
1.1 智能系统 AI 是计算机科学、心理学和哲学的结合。简而言之,我们可以将 AI 定义为使计算机智能地做事的研究 程序必须具备的能力 AI 程序必须具备的能力和智能特征,如学习、推理、接口以及接收和理解信息。对 AI 的理解 对相关术语的理解 智能、知识、推理、认知、学习和许多其他计算机相关术语。显示依赖于复杂问题,一般原则对这些问题没有多大帮助,尽管有一些有用的一般原则。对 AI 的第一种观点是,AI 是关于复制人脑所做的事情 第二种观点是,AI 是关于复制人脑应该做的事情 即合乎逻辑或理性地做事 ELIZA 这里简要提到了它的主要特征:智能模拟 响应质量 连贯性 语义 ELIZA 是一个用英语与用户对话的程序,就像 iPhone 中的 siri 一样。智能系统的分类为了设计智能系统,对这些系统进行分类非常重要 此类系统可能分为四种类别。
1.1 背景 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
根据其创立法规,FRA与非政府组织和民间社会机构合作,活跃于基本权利领域。此类组织已向机构报告说,他们很难为整个欧盟(EU)(EU)的保护,促进和实现人权做出贡献。fra的研究(重点介绍了2011年至2017年),揭示了各种挑战,可能会影响民间社会组织(CSO)的工作。这些包括:立法的不利变化或法律实施不足;障碍获得财务资源并确保其可持续性;难以获取决策者,并参与法律和决策;以及对人权捍卫者的攻击和骚扰,包括旨在使CSO合法化和污名化的负面话语。
PC12 是同类飞机中制造最精良、飞行最安全的飞机之一。对吗?作者:John Morris 绝对正确!但既然如此,那么为什么在过去一年(2008 年 9 月至 2009 年 8 月)期间,[报告的] 事件(1)/ 事故(4 起致命)不幸增加?当局对所有 PC12 事故(视为已结案)以及美国大多数航空事故给出的主要原因是人为因素或空间定向障碍,通常意味着这是飞行员的错。无论使用何种措辞,将其归咎于飞行员,有时似乎是一个过于简单的借口,而且不公平,尽管将其归咎于其他人(或事物)已成为一种全国性的消遣。然而,与所有其他指责者不同,在提到人为因素的情况下,飞机事故调查的范围及其结论确实指向某种判断或决策错误,而这种错误至少可能导致最终结果。我们都应该意识到导致这一结果的事件“链”,飞行员的行为或不作为可以形成联系或打破这一链条。所以我们又一次在这里讨论决策和风险管理。为什么?在我看来,我们需要另一次审查,也许还需要一个不同的视角。FAA [风险管理手册 - 2009 年 5 月]、AOPA 和其他来源提供了风险管理工具。它们非常有用,至少应该定期参考。但本文将重点关注从不同角度看到的决策和风险管理,即对 PC12 能力可能过度自信,导致决策失误和风险增加。在我多年的教学中,我通常会提到 Pilatus 如何出色地“确保”PC12 的飞行员安全,这意味着消除了许多飞行员可能导致事故/意外的经典方式。但没有人可以完全消除人为因素或消除破坏系统的手段。最终,重力总是占上风。因此,我们希望努力涵盖所有有形因素,并为无形因素做好准备。我很好奇,驾驶员是否会对 PC12 及其功能过于自信。让我们谈谈有形因素。技术是否助长了这种过度自信?当今的技术比以往任何时候都更加神奇,而且变化/改进的速度不是几年,而是几个月。因此,我确实相信,这会产生问题,成为链条中的一个环节,直到飞行员适应更新的可用技术。这方面的例子包括改进的下载天气信息、WAAS 升级的航空电子设备-自动驾驶仪接口,甚至 PC12NG 与 Apex 系统。我所说的调整是指正确理解和利用这些新信息,因为它适用于增强 PC12 的飞行。这也意味着了解这项新技术不那么明显的局限性,从而知道何时使用标准、基本的飞行判断,如果有疑问。另一个有形的是飞行员驾驶 PC12 的一般熟练程度,而不仅仅是仪表熟练程度。FAA 通过改变方法提供了一些帮助
电子元件。由于重新设计,新显示器变得更加依赖正确的接地。如果不遵守官方规范中规定的建议接地,则显示器可能会出现噪音。显示器规范规定控制器电子设备直接为显示器提供 15 个接地。在某些情况下,这可能不切实际或无法在客户的设计中提供。考虑到这一点,我设计了一个接口板(在 Quadrangle Products 的帮助下),可容纳来自控制器电子设备的最少数量的客户提供的接地。