世界经历了从饥荒时代到全球粮食生产时代的显着转变,该时代满足了成倍增长的人口。这种转变已经通过重要的农业革命实现,这是通过注入机械,工业和经济投入的强化为标志的农业。然而,农业的这种快速发展也导致了农药,肥料和灌溉等农业投入的扩散,这些投入引起了长期的环境危机。在过去的二十年中,我们目睹了农作物生产的高原,耕地损失以及气候条件下的急剧转变。这些挑战强调了迫切需要通过参与式方法来保护我们的全球下议院,尤其是环境,该方法涉及全球国家,无论其发展地位如何。为了实现农业可持续性的目标,必须采用多学科的方法来整合诸如生物学,工程,化学,经济学和社区发展等领域。在这方面的一项值得注意的举措是零预算自然农业,它强调了利用植物和动物产品的协同作用来增强作物的建立,建立土壤肥力并促进有益的微生物的增殖。最终目标是创建自我维持的农业生态系统。这篇评论倡导在自然农业中纳入生物技术工具,以环保的方式加快此类系统的动态。通过利用生物技术的力量,我们可以提高农业生态学的生产率,并产生大量的食物,饲料,饲料,纤维和营养素,以满足我们不断扩大的全球人群的需求。
精确农业涉及使用实时信息来增强对资源的有效利用和对农业方法的监督,同时却最大程度地减少了不利的环境影响。多亏了遥感技术的进步,现在在农业部门中生产了大量的大数据。当使用机器和深度学习技术进行分析时,该数据需要转换为有价值的信息,已证明是有益的。这个研究主题“大数据,机器和深度学习的最新进展”吸引了20种高质量的文章,这些文章涵盖了现状的应用以及人工智能,大数据,特征优化,作物疾病检测和分类的精确农业的技术发展。在不断发展的农业景观中,三个关键主题已成为变革性变革的信标。本社论探讨了塑造农业未来的创新领域,重点是三个相互联系的主题:植物疾病检测和作物健康监测的进步,在精确农业中的人工智能(AI)和机器学习(ML)的整合以及用于作品生产优化的方法。在农业科学领域,由于开创性的研究努力,植物疾病检测和作物健康监测的动态景观已经取得了重大进展。Shoaib等。解决噬菌毒全球问题通过强调机器学习技术的关键作用来面对手动监测植物疾病的持续挑战。他们的工作提出了一个基于深度学习的系统,利用了在一个大量数据集中训练的卷积神经网络(Inception Net),其中包括18,161个细分和非细分的番茄叶图像。值得注意的是使用两个最先进的语义分割模型U-NET和修改的U-NET进行疾病检测和分割。结果展示了修改后的U-Net模型的出色性能,超过现有方法,并以高精度对植物疾病进行分类时的效率。
垂直农场(VF)的农业生产将在防止环境危机,良好的治理和维持世界上所有人的粮食安全方面发挥重要作用。吉兰省的生态足迹大大超过了其生物学能力,表明其自然资源和生态系统的压力很大。这个问题主要是由于在农业领域使用传统生产方法,需要改变生活方式和生产方法。当前研究的目的是借助优势,劣势,机遇和威胁(SWOT)模型和定量战略规划矩阵(QSPM)的VF在吉兰省的实现。在确定了影响VF产量的内部因素(优势和劣势)和外部因素(机会和威胁)之后,确定了必要的策略,然后使用QSPM矩阵确定了优先级。通过书面科学来源和调查研究进行了必要的信息,这些信息基于两种地理和农村计划教授之间的关键问题,工厂生产部门的水资源工程,土壤,建筑和专家以及环境部门负责人,吉兰省的圣战农业组织以及该组织食品卫生。参加调查的统计人群为30人。研究结果表明,根据优势,劣势,机遇和威胁制定了7种策略,并根据QSPM表中四种策略的重要性进行了优先排序。确保吉兰省粮食安全的首要任务是专注于提高单位面积的农业生产率。考虑到该地区的所有权挑战和有限的土地可用性,该策略至关重要。因此,应将提高单位面积的生产率提高,以满足人口的粮食需求。吉兰省VF生产的策略是一种竞争激烈的战略,并且在这种情况下需要吸引必要的资金。本研究通过对吉兰省垂直农业的可行性进行全面评估来填补研究空白。强调方法论,战略规划以及应对粮食安全和环境挑战的重视有助于现有知识体系。通过强调研究发现的可转移性和适应性,其他研究人员可以利用甲基苯丙胺并将策略调整到自己的地区,从而在可疑的农业领域进行进一步的研究和进步。
世界经历了从饥荒时代到全球粮食生产时代的显着转变,该时代满足了成倍增长的人口。这种转变已经通过重要的农业革命实现,这是通过注入机械,工业和经济投入的强化为标志的农业。然而,农业的这种快速发展也导致了农药,肥料和灌溉等农业投入的扩散,这些投入引起了长期的环境危机。在过去的二十年中,我们目睹了农作物生产的高原,耕地损失以及气候条件下的急剧转变。这些挑战强调了迫切需要通过参与式方法来保护我们的全球下议院,尤其是环境,该方法涉及全球国家,无论其发展地位如何。为了实现农业可持续性的目标,必须采用多学科的方法来整合诸如生物学,工程,化学,经济学和社区发展等领域。在这方面的一项值得注意的举措是零预算自然农业,它强调了利用植物和动物产品的协同作用来增强作物的建立,建立土壤肥力并促进有益的微生物的增殖。最终目标是创建自我维持的农业生态系统。这篇评论倡导在自然农业中纳入生物技术工具,以环保的方式加快此类系统的动态。通过利用生物技术的力量,我们可以提高农业生态学的生产率,并产生大量的食物,饲料,饲料,纤维和营养素,以满足我们不断扩大的全球人群的需求。
海藻养殖越来越被认为是一种可持续的海洋资源管理机会,但它也带来了需要仔细评估的社会经济和环境风险。本快速范围审查 (QSR) 考察了通过与海上风能生产共置来扩大海藻养殖的当前知识状态。共分析了 2001 年至 2022 年的 240 份已发表记录,包括关于一般海藻养殖及其与海上风能整合的研究,这两项研究都表明,随着时间的推移,年度出版率显着增加。从地理上看,大多数关于一般海藻养殖的研究是在亚洲进行的,而大多数关于以风能为重点的整合的研究是在欧洲进行的。养殖物种的差异很明显,红藻在一般文献中占主导地位,而褐藻在以风能为重点的研究中占主导地位。生态系统服务分析表明,与一般文献相比,供应服务被过分强调,而文化服务在以风能为重点的研究中代表性不足。环境限制是两份数据集中被提及最多的挑战,但其性质不同:一般文献强调害虫、疾病和附生植物等问题会降低农场产量,而以风为重点的研究则强调农场对当地物种、栖息地和生态系统的风险。虽然环境知识缺口是总体上被提及最多的,但在以风为重点的研究中,法律知识缺口占主导地位。这些发现强调需要对海藻-风能多用途进行更多地理和分类学多样化的研究,以及进一步研究海上环境中的文化服务、减轻环境风险的战略以及制定共同治理框架以促进可持续海洋发展。
2田纳西州盖恩斯维尔,佛罗里达州盖恩斯维尔大学, 2植物科学(IBG-2),ForschungszentrumJülichGmbh,德国尤利希,德国尤利希,4,自然科学系4,麦格理大学,麦奎里大学,澳大利亚,新南威尔士州,新南威尔士州,新南威尔士州,纽约州,伊斯兰教少校,是经济分析。 National Key Laboratory of Ef fi cient Plant Carbon Capturing, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China, 7 Queensland Alliance for Agriculture and Food Innovations, The University of Queensland, St Lucia, QLD, Australia, 8 Institute of Biology II, Faculty of Biology, University of Freiburg,德国弗莱堡,9个综合生物信号研究中心(CIBSS),德国弗莱堡大学,德国弗莱堡大学,加利福尼亚大学,加利福尼亚大学戴维斯分校的植物科学系102植物科学(IBG-2),ForschungszentrumJülichGmbh,德国尤利希,德国尤利希,4,自然科学系4,麦格理大学,麦奎里大学,澳大利亚,新南威尔士州,新南威尔士州,新南威尔士州,纽约州,伊斯兰教少校,是经济分析。 National Key Laboratory of Ef fi cient Plant Carbon Capturing, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China, 7 Queensland Alliance for Agriculture and Food Innovations, The University of Queensland, St Lucia, QLD, Australia, 8 Institute of Biology II, Faculty of Biology, University of Freiburg,德国弗莱堡,9个综合生物信号研究中心(CIBSS),德国弗莱堡大学,德国弗莱堡大学,加利福尼亚大学,加利福尼亚大学戴维斯分校的植物科学系10
这项研究是在2021 - 2024年间,在北方邦Modipuram的ICAR-印度农业系统研究所进行,以评估综合有机农业系统(IOFS)和综合农业系统(IOFS)的影响,并在土壤生物学特性中对土壤生物学特性对植物,Enzyme Active and enzyme vepent and Freat and corod and Foreal and Frol and Frol and Frol and Froleal corpors and Frol and Foreal system and Frol and Foreal system,coreat和Glod corpors and Foreal systern。iof始终在土壤健康指标方面表现出卓越的性能。在IOF下观察到较高的微生物种群(细菌,真菌和放线菌),尤其是在蔬菜作物下。与IFS模型相比,谷物作物下的土壤(食品系统)显示IOFS模型中细菌种群增加了约41%。类似地,在蔬菜系统下的土壤显示IOFS模型中真菌种群增加了32%。酶活性,包括脱氢酶,β-葡萄糖苷酶,尿素酶和碱性磷酸酶的活性在IOF中显着更高,并显着改善了果实和蔬菜作物。 饲料系统在IOF中显示出脱氢酶(36.8%)和β-葡萄糖苷酶(34.7%)的脱氢酶的改善,与IFS相比。 IOF还显示出易于提取的肾小球素(EEG)和总肾小球素(TG)的水平增加。 蔬菜系统的脑电图和TG分别提高了32%和14%,这表明弧形菌根真菌的活性增强了,碳和氮隔离的潜力。 这些发现突出了有机养分和害虫管理实践在促进土壤生育和可持续性方面的好处。酶活性,包括脱氢酶,β-葡萄糖苷酶,尿素酶和碱性磷酸酶的活性在IOF中显着更高,并显着改善了果实和蔬菜作物。饲料系统在IOF中显示出脱氢酶(36.8%)和β-葡萄糖苷酶(34.7%)的脱氢酶的改善,与IFS相比。IOF还显示出易于提取的肾小球素(EEG)和总肾小球素(TG)的水平增加。 蔬菜系统的脑电图和TG分别提高了32%和14%,这表明弧形菌根真菌的活性增强了,碳和氮隔离的潜力。 这些发现突出了有机养分和害虫管理实践在促进土壤生育和可持续性方面的好处。IOF还显示出易于提取的肾小球素(EEG)和总肾小球素(TG)的水平增加。蔬菜系统的脑电图和TG分别提高了32%和14%,这表明弧形菌根真菌的活性增强了,碳和氮隔离的潜力。这些发现突出了有机养分和害虫管理实践在促进土壤生育和可持续性方面的好处。
在2014年在马尔博举行的非洲联盟峰会上采用了综合的非洲农业发展计划(CAADP),导致对农业的投资增加,目的是增加了该部门对社会经济转型的贡献,并消除了饥饿。马拉博宣言是在人口增长增加非洲粮食需求的时候,威胁着由于发展中国家农业部门表现较低而造成的粮食安全(Silva等,2023)。的主张是,这种增加的投资将导致产量增加并改善生计(Jayne等,2018)。然而,在2024年,十年后,粮食安全和经济绩效持续很大差距,尤其是撒哈拉以南非洲(SSA)的小农户中。CAADP的关键策略是针对可持续土地管理下扩大该地区的主要策略,改善了粮食可用性,减少饥饿以及改善农业研究,技术传播和采用。津巴布韦在撒哈拉以南非洲,是最容易发生气候的国家之一 - 极端天气事件的风险会影响人口,尤其是最贫穷的人,其中包括最贫穷的人,其中包括小农,他们在发生灾难时无法应付。这些极端的天气事件包括干旱,洪水,气旋和热带风暴,这可能有助于为大多数依靠雨养农业的农民维持贫困。
这项研究是在容易遭受荒漠化的地区Horqin Sandy Land进行的,重点是Tiger Nut Sedge(Cyperus Esculentus L.),这是一种以其深层根系而闻名的耐旱,快速生长的植物。研究人员发现,与传统的耕作方法相比,NT显着提高了土壤的总碳含量,这为改善旱地土壤质量提供了有希望的方法。
抽象的许多传统的非洲小谷物已被忽略和未充分利用。小谷物也被忽略了,即使它们在营养丰富并且对气候变化也有弹性。现代技术以人工智能的名义应用于各种作物生产中。人工智能在农业中的应用已被证明可以产生积极的结果。本文旨在确定是否像其他任何作物一样将人工智能应用于小谷物。在本研究中使用了PRISMA报告结构后的系统审查。评论针对的是人工智能在高粱和小米生产中的应用。结果表明,人工智能可以用于高粱和小米土地评估,种植,疾病和杂草管理。但是,高粱和小米收获缺乏结果。基于评论,可以得出结论,人工智能可以像其他任何谷物作物一样在高粱和小米生产中应用。建议在高粱和小米农业的各个方面开发人工智能计划的应用更多研究。