1 波尔多大学,CNRS,I2M 波尔多,B – timement A11,351 解放路,CEDEX,33405 塔朗斯,法国; clemailhe@gmail.com 2 替代能源合作研究中心(CICenergiGUNE)、巴斯克研究与技术联盟(BRTA)、阿拉瓦科技园区,01510 Vitoria-Gasteiz,西班牙; sdoppiu@cicenergigune.com (SD); jldauvergne@cicenergigune.com (J.-LD); ssantos@cicenergigune.com (SS-M.); epalomo@cicenergigune.com (EPdB) 3 TECNALIA,巴斯克研究与技术联盟 (BRTA),圣塞瓦斯蒂安科技园区,20009 Donostia-San Sebastián,西班牙 4 应用物理学 II,巴斯克大学 UPV-EHU,48940 Leioa,西班牙 5 Amplitude,11 Avenue de Canteranne,Cité de la Photonique,Bâtiment MEROPA,33600 Pessac,法国; alexandre.godin@amplitude-laser.com 6 波尔多大学,CNRS,波尔多 INP,LCPO—UMR5629,16 Avenue Pey Berland,CEDEX,33607 Pessac,法国; guillaume.fleury@u-bordeaux.fr 7 智利天主教大学工程学院建筑学院,Av. Libertador Bernardo O'Higgins 340,圣地亚哥 8331150,智利; frouault@uc.cl 8 Ikerbasque,巴斯克科学基金会,48013 毕尔巴鄂,西班牙 * 通讯地址:marie.duquesne@enscbp.fr
抽象的生物探测可以发现具有有趣的生态特征和有价值的生物技术特征的新酵母菌菌株和物种,例如将不同的碳源从工业侧转化为生物蛋白酶UCT的能力。在这项研究中,我们在热带西非进行了未靶向的酵母菌生物镜头,收集了1,996株分离株,并在70种不同的环境中确定了它们的生长。该系列包含许多分离株,具有吸收几种具有成本效益且可持续的碳和氮源的潜力,但我们专注于含有203种能够生长在乳糖上的菌株的特征,乳糖是乳制品的主要碳源,这是乳制品行业丰富的侧流奶酪乳清中的主要碳源。通过内部转录的间隔测序对乳糖映射菌株,我们从腹部和基本肌菌群中鉴定了30种不同的酵母菌物种,以前没有证明其中有一些在乳糖上生长,有些是新物种的候选者。观察到的生长和细胞外乳糖酶活性的生长和比率差异表明,酵母菌使用一系列不同的策略来代谢乳糖。值得注意的是,几种基质菌酵母,包括apiotirichum mycotoxinivorans,Papiliotrema laurentii和Moesziomyces natararcitus,积累了多达40%的细胞干重的脂质,证明它们可以将乳糖转化为重大生物含量的生物产物。
缩写:AASLD,美国肝病研究协会;AI,人工智能;ALT,丙氨酸氨基转移酶;AST,天冬氨酸氨基转移酶;AUROC,受试者工作特征曲线下面积;BMI,身体质量指数;CAP,控制衰减参数;CKD,慢性肾病;cT1,校正 T1;CVD,心血管疾病;DM,糖尿病;DNL,从头脂肪生成;DPP-4,二肽基肽酶-4;ELF,增强型肝纤维化;FAST,FibroScan-AST;FDA,美国食品药品监督管理局;FIB-4,纤维化-4 指数;GH,生长激素;GLP-1RA,胰高血糖素样肽-1 受体激动剂;LDL-C,低密度脂蛋白胆固醇;LSM,肝脏硬度测量;MAST,来自 MRI-PDFF、MRE 和血清 AST 的评分; MEFIB,MRE 与 FIB-4 联合使用;MRE,磁共振弹性成像;NIT,无创性检查;OSA,阻塞性睡眠呼吸暂停;PCOS,多囊卵巢综合征;PDFF,质子密度脂肪分数;PIVENS,吡格列酮、维生素 E 和安慰剂治疗非糖尿病性 NASH 患者的疗效对比;RCT,随机对照试验;SGLT-2,钠葡萄糖协同转运蛋白-2;T2DM,2 型糖尿病;TM6SF2,跨膜 6 超家族成员 2;UDCA,熊去氧胆酸;VCTE,振动控制弹性成像
乳腺癌具有特殊的肿瘤微环境,通常被大量的脂肪细胞包围,这些脂肪细胞可以产生并分泌脂肪酸和脂肪因子。脂肪细胞对乳腺癌脂质代谢具有重塑作用,而脂肪酸和脂肪液滴可以使乳腺癌细胞更具侵略性。脂质代谢,尤其是脂肪酸的合成,是膜生物合成,储能和信号分子产生的重要细胞过程。因此,阻断对癌细胞的脂质供应或改变脂质组成对癌细胞的信号传递和细胞增殖具有重要影响。脂质可用性的改变还会影响癌细胞迁移,血管生成诱导,代谢共生,免疫监测的逃避和抗癌药物耐药性。脂肪酸的合成和代谢已被广泛关注,作为癌症治疗的潜在靶标,并且还讨论了调节肿瘤脂质微环境以提高抗肿瘤药物的敏感性的研究;但是,靶向这些过程的策略尚未转化为临床实践。
摘要 原发性阿米巴脑膜脑炎 (PAM) 是一种由自由生活的阿米巴原虫 Naegleria 引起的迅速致命的感染。阿米巴沿着大脑神经迁移到大脑,导致癫痫、昏迷并最终导致死亡。先前的研究表明,N. fowleri 的近亲 Naegleria gruberi 更喜欢将脂质而不是葡萄糖作为能量来源。因此,我们测试了几种已经批准的脂肪酸氧化抑制剂以及目前使用的药物两性霉素 B 和米替福新。我们的数据表明,乙莫克舍、奥利司他、哌克昔林、硫利达嗪和丙戊酸可抑制 N. gruberi 的生长。然后我们在 N. fowleri 上测试了这些化合物,发现乙莫克舍、哌克昔林和硫利达嗪是有效的生长抑制剂。因此,脂质不仅是N. gruberi 的首选食物来源,而且脂肪酸的氧化似乎对N. fowleri 的生长也至关重要。抑制脂肪酸氧化可能带来新的治疗选择,因为硫利达嗪可以在感染部位达到的浓度下抑制N. fowleri 的生长。它还可以增强目前使用的治疗方法,因为棋盘分析显示米替福新和乙莫克舍之间存在协同作用。应进行动物试验以确认这些抑制剂的附加值。虽然针对这种罕见疾病开发新药和进行随机对照试验几乎是不可能的,但抑制脂肪酸氧化似乎是一种有前途的策略,因为我们展示了几种正在或曾经使用的药物的有效性,因此将来可以重新用于治疗 PAM。
总共有80名178例患者(平均[SD]年龄,58.5 [11.9]年; 43 007 [53.6%]男性)进行了219 941人年,其中4102名患者患有NAFLD回归。When compared with sulfonylureas, SGLT2 inhibitors (adjusted subdistribution hazard ratio [ASHR], 1.99 [95% CI, 1.75-2.27]), thiazolidinediones (ASHR, 1.70 [95% CI, 1.41-2.05]), and DPP-4 inhibitors (ASHR, 1.45 [95% CI, 1.31-1.59])与NAFLD回归有关。SGLT2抑制剂与NAFLD回归的可能性更高有关。仅SGLT2抑制剂(ASHR,0.37 [95%CI,0.17-0.82]),而不是噻唑烷二酮或DPP-4抑制剂,与与磺酸盐相比时,与肝脏不良相关的发病率的发病率较低显着相关。
©作者2024。Open Access本文是根据Creative Commons Attribution 4.0 International许可获得许可的,该许可允许以任何媒介或格式使用,共享,适应,分发和复制,只要您对原始作者和来源提供适当的信誉,请提供与创意共享许可证的链接,并指出是否进行了更改。本文中的图像或其他第三方材料包含在文章的创意共享许可中,除非在信用额度中另有说明。如果本文的创意共享许可中未包含材料,并且您的预期用途不受法定法规的允许或超过允许的用途,则您需要直接从版权所有者那里获得许可。要查看此许可证的副本,请访问http://creativecommons.org/licenses/4.0/。Creative Commons公共领域奉献豁免(http://creativecom- mons.org/publicdomain/zero/zero/1.0/)适用于本文中提供的数据,除非在信用额度中另有说明。
摘要:在临床实践中,我们经常处理患有非酒精性脂肪性肝病 (NAFLD) 和 2 型糖尿病 (T2DM) 的患者。NAFLD 的病因主要与胰岛素抵抗 (IR) 和肥胖有关。同样,后者患者正在发展为 T2DM。然而,NAFLD 和 T2DM 共存的机制尚未完全阐明。考虑到这两种疾病及其并发症都具有流行病的规模,并显著影响寿命和生活质量,我们旨在回答哪种疾病首先出现,从而强调对它们的诊断和治疗的必要性。为了解决这个问题,我们介绍并讨论了这两种共存代谢疾病的流行病学数据、诊断、并发症和发病机制。由于缺乏统一的 NAFLD 诊断程序,并且这两种疾病都是无症状的,尤其是在其早期阶段,这个问题很难回答。总而言之,大多数研究人员认为 NAFLD 是第一种疾病,并开启了一系列最终导致 2 型糖尿病发展的情况。然而,也有数据表明 2 型糖尿病是在 NAFLD 之前发展的。尽管我们无法明确回答这个问题,但让临床医生和研究人员注意 NAFLD 和 2 型糖尿病的共存非常重要,以防止其后果。
在糖尿病肾脏中激活了小的GTPase Rho及其效应子Rho-kinase(Rock),最近的研究十年表明,岩石信号传导是糖尿病肾脏疾病进展的一种积分途径。我们以前识别了岩石(岩石)在脂肪酸代谢中的岩石1的独特作用。但是,药理学干预对Rock1的影响尚不清楚。在本研究中,我们表明Y-27632对Rock1的抑制作用和Fasudil恢复了肾小球中的脂肪酸氧化。从机械上讲,这些化合物通过AMPK磷酸化和随后诱导PGC-1 a来优化脂肪酸利用率和氧化还原平衡。一项进一步的体内研究表明,Rock1的抑制抑制了肾小酸氧化相关基因表达的下调,而DB/DB小鼠的肾小球细胞中的线粒体片段化抑制了降低。这些观察结果表明,通过改善肾小球脂肪酸代谢的机制,Rock1可能是糖尿病肾脏疾病的有前途的治疗靶点。©2023 Elsevier Inc.保留所有权利。
妊娠糖尿病(GDM)是一种在妊娠期间触发的胰岛素耐药性增强的形式。本研究研究了胰岛素抵抗如何改变瘦长GDM模型中胎盘长链多不饱和脂肪酸(LCPUFA)的转运和代谢。怀孕的Sprague Dawley大鼠用S961,一种胰岛素受体拮抗剂(每天30 nmol/kg S.C.)或妊娠日(GD)7至20的媒介物。每天的产妇体重,食物和水的摄入量。血压评估和葡萄糖耐量测试是在GD20上进行的。胎儿血浆和胎盘在GD20上收集,并使用LC-MAS光谱法处理进行脂肪酸测量。使用RT 2 Profiler PCR阵列评估脂肪酸代谢相关基因的表达。结果通过QRT-PCR验证。孕妇大鼠中用S961的胰岛素受体阻断导致葡萄糖不耐症,空腹葡萄糖和胰岛素水平升高。母体体重增加,食物和摄入量没有影响;但是,S961显着提高了孕产妇的血压和心率。胎盘N3和N6 LCPUFA浓度分别显着降低了8%和11%,但它们在胎儿血浆中的水平增加了15%和4%。rt 2个剖面阵列显示,与脂肪酸β-氧化有关的10个基因的胎盘表达(ACAA1A,ACADM,ACOT2,ACOX2,ACOX2,ACSBG1,ACSBG1,ACSL4,ACSM5,CPT1B,ECI2,EHHADH,EHHADH)和3个与Fatty Acid Acid Acid Acid fortremational(Fab Acid Patherey Patherefeartiment)(Faby Actremight Patherefect)。总而言之,缺乏胰岛素作用增加了与胎盘脂肪酸β-氧化和转运相关的基因表达,而LCPUFA转移到胎儿。向胎儿延伸的脂质水平的增加可能导致脂肪肥胖和后期代谢功能障碍。