引言非酒精性脂肪肝病(NAFLD)是全球最常见的慢性肝病(1-6)。nafld包括一系列定义明确的阶段,包括简单的脂肪肝(NAFL),这是一种良性疾病和非酒精性脂肪性肝炎(NASH)。NASH通过激活炎症性级联反应和纤维发生,发展为肝硬化和肝细胞癌(HCC)(2,3)。NASH的主要危险因素包括肥胖,胰岛素抵抗,葡萄糖不耐症或2型糖尿病和血脂异常(4、5)等代谢疾病。尽管NASH的患病率与全球肥胖症大流行,对前者的有效治疗策略的同时增长(1,6)。患者必须接受肝移植以防止NASH的进展。NAFLD进展中涉及的关键事件是肝脂肪毒性是由周围组织(主要是脂肪组织)或肝脂肪性增加的过量自由脂肪酸(FFA)涌入引起的。肝脂肪毒性发生在肝细胞管理和导出FFA作为甘油三酸酯(TGS)的能力时。
1. Fazel Y、Koenig AB、Sayiner M、Goodman ZD、Younossi ZM。非酒精性脂肪性肝病的流行病学和自然史。代谢。2016;65(8):1017-1025。2. Marchesini G、Brizi M、Bianchi G 等人。非酒精性脂肪性肝病 2001;50。3. Lonardo A、Nascimbeni F、Maurantonio M、Marrazzo A、Rinaldi L、Adinolfi LE。非酒精性脂肪性肝病:不断发展的范式。世界胃肠病杂志。2017;23(36):6571-6592。4. Stefan N、Hans-Ulrich Häring KC。非酒精性脂肪性肝病:病因、诊断、心脏代谢后果和治疗策略。柳叶刀糖尿病内分泌学。2019;4:313-324。5. Newton KP、Hou J、Crimmins NA 等人。非酒精性脂肪性肝病儿童中 2 型糖尿病和糖尿病前期的患病率 Kimberly。JAMA Pediatr。2016;170(10):e161971。6. Eslam M、Newsome PN、Sarin SK 等人。代谢功能障碍相关脂肪性肝病的新定义:国际专家共识声明。J Hepatol。2020;73(1):202-209。doi: 10.1016/j。 jhep.2020.03.039 7. Eslam M, Alkhouri N, Vajro P 等。定义儿童代谢(功能障碍)相关脂肪肝疾病:国际专家共识声明。柳叶刀胃肠肝病。2021;6(10): 864-873。
摘要肠道微生物群及其代谢产物在代谢,内分泌和免疫功能的调节中起关键作用。尽管尚待充分阐明行动的确切机制,但可用的知识支持了微生物生成的短链脂肪酸(SCFA)的能力,例如乙酸盐,丙酸酯和丁酸酯,影响表观遗传和代谢cascades cascades cascades和分化基因,化学分化,分化,不受欢迎,并在几个中,并且在几个中受到了控制。虽然将结肠肠道上皮细胞用作首选代谢底物和能源,但最新的证据表明,这些代谢物调节免疫功能,尤其是微调T细胞效应子,调节和记忆表型,直接在体内对化学,放射治疗和免疫疗法的效果直接影响。最新数据还支持在T细胞制造过程中使用这些代谢产物,为精制的Tepedive T细胞疗法工程铺平了道路。在这里,我们回顾了该领域的最新进展,强调了体外和体内SCFA塑造T细胞表型和功能的能力的证据。
我们先前发现,通过麦芽糖加入A和A-葡萄糖苷酶抑制剂Miglitol(麦芽糖/Miglitol)通过glut2抑制剂抑制剂phloretin抑制小鼠中的A--葡萄糖苷酶抑制剂Miglitol(麦芽糖/Miglitol)。此外,麦芽糖/miglitol抑制了葡萄糖依赖性胰岛素多肽(GIP)通过涉及小型脂肪酸(SCFA)的机制隔离,该机制由微生物组产生。然而,未知是否通过调节SCFA来抑制GLP-1分泌。在这项研究中,我们检查了腓果素对体外和体内微生物组释放的影响。在大肠杆菌中,当用麦芽糖/米格列醇培养时,乙酸盐释放到培养基中。在小鼠中,菲洛莱汀抑制麦芽糖/米格列醇诱导的SCFA在门静脉中增加。此外,与二氯化津在小鼠中共同施用时,α-甲基-D-葡萄糖(MDG)是GLUT2的较差的GLP-1分泌,这显着增加了GLP-1分泌,这表明GLUT2对于葡萄糖/菲洛兹蛋白诱导的GLP-1分泌不是必不可少的。MDG提高了门户网站SCFA水平,从而增加了GLP-1分泌并抑制小鼠的GIP分泌,这表明MDG是可代谢的,而不是哺乳动物,而是微生物群。总而言之,建议通过抑制微生物组产生的SCFA抑制麦芽糖/米格列醇诱导的GLP-1分泌。©2022 Elsevier Inc.保留所有权利。
摘要 肠道微生物群分解不可消化的淀粉后释放的挥发性小分子,包括短链脂肪酸 (SCFA)、乙酸盐和丙酸盐,可通过特定的 G 蛋白偶联受体 (GPCR) 以类似激素的方式发挥作用。这些 SCFA 的主要 GPCR 靶标是 FFA2 和 FFA3。使用转基因小鼠(其中 FFA2 被一种称为设计药物专门激活的设计受体 (FFA2-DREADD) 的改变形式取代,但 FFA3 保持不变)和新发现的 FFA2-DREADD 激动剂 4-甲氧基-3-甲基苯甲酸 (MOMBA)),我们展示了 FFA2 和 FFA3 的特定功能如何定义 SCFA-肠-脑轴。肠腔内 FFA2/3 的激活会刺激脊髓活动,而肠道 FFA3 的激活会直接调节感觉传入神经元的放电。此外,我们证明 FFA2 和 FFA3 均在背根神经节和结状神经节中功能性表达,它们通过不同的 G 蛋白和机制发出信号来调节细胞钙水平。我们得出结论,FFA2 和 FFA3 在不同水平上发挥作用,为肠道微生物群来源的 SCFA 调节中枢活动提供了一个轴。
摘要 肠道微生物群分解不可消化的淀粉后释放的挥发性小分子,包括短链脂肪酸 (SCFA)、乙酸盐和丙酸盐,可通过特定的 G 蛋白偶联受体 (GPCR) 以类似激素的方式发挥作用。这些 SCFA 的主要 GPCR 靶标是 FFA2 和 FFA3。使用转基因小鼠(其中 FFA2 被一种称为设计药物专门激活的设计受体 (FFA2-DREADD) 的改变形式取代,但 FFA3 保持不变)和新发现的 FFA2-DREADD 激动剂 4-甲氧基-3-甲基苯甲酸 (MOMBA)),我们展示了 FFA2 和 FFA3 的特定功能如何定义 SCFA-肠-脑轴。肠腔内 FFA2/3 的激活会刺激脊髓活动,而肠道 FFA3 的激活会直接调节感觉传入神经元的放电。此外,我们证明 FFA2 和 FFA3 均在背根神经节和结状神经节中功能性表达,它们通过不同的 G 蛋白和机制发出信号来调节细胞钙水平。我们得出结论,FFA2 和 FFA3 在不同水平上发挥作用,为肠道微生物群来源的 SCFA 调节中枢活动提供了一个轴。
委员会主席 Stephen H. Safe 委员会成员 Natalie Johnson Arul Jayaraman Timothy Phillips 跨学科项目主席 Ivan Rusyn
摘要 胆汁淤积性和非酒精性脂肪性肝病 (NAFLD) 具有几种共同的关键病理生理机制,这些机制可通过目前针对这两个领域开发的新型治疗概念进行靶向治疗。核受体 (NR) 是配体激活的关键代谢过程的转录调节剂,包括肝脏脂质和葡萄糖代谢、能量消耗和胆汁酸 (BA) 稳态,以及炎症、纤维化和细胞增殖。这些过程的失调会导致胆汁淤积性和脂肪性肝病的发病和进展,使 NR 成为新型治疗方法的前沿。这包括 BA 和脂肪酸激活的 NR,例如法呢醇-X 受体 (FXR) 和过氧化物酶体增殖激活受体,针对这些受体,已经开发出针对特定或多种亚型的高亲和力治疗配体。此外,针对甲状腺激素受体 β 1 的新型肝脏特异性配体完善了目前可用的 NR 靶向药物谱。除了 FXR 配体外,BA 信号传导还可以通过 FXR 激活的成纤维细胞生长因子 19 的模拟物、通过肝细胞和肠细胞中的摄取抑制剂调节其肠肝循环以及进行胆肝分流(而不是肠肝循环)的新型 BA 衍生物来靶向。其他治疗方法更直接地将炎症和/或纤维化作为疾病进展的关键事件。协同针对代谢紊乱、炎症和纤维化的组合策略可能最终是成功治疗这些复杂且多因素疾病所必需的。
摘要 胆汁淤积性和非酒精性脂肪性肝病 (NAFLD) 具有几种共同的关键病理生理机制,这些机制可通过目前针对这两个领域开发的新型治疗概念进行靶向治疗。核受体 (NR) 是配体激活的关键代谢过程的转录调节剂,包括肝脏脂质和葡萄糖代谢、能量消耗和胆汁酸 (BA) 稳态,以及炎症、纤维化和细胞增殖。这些过程的失调会导致胆汁淤积性和脂肪性肝病的发病和进展,使 NR 成为新型治疗方法的前沿。这包括 BA 和脂肪酸激活的 NR,例如法呢醇-X 受体 (FXR) 和过氧化物酶体增殖激活受体,针对这些受体,已经开发出针对特定或多种亚型的高亲和力治疗配体。此外,针对甲状腺激素受体 β 1 的新型肝脏特异性配体完善了目前可用的 NR 靶向药物谱。除了 FXR 配体外,BA 信号传导还可以通过 FXR 激活的成纤维细胞生长因子 19 的模拟物、通过肝细胞和肠细胞中的摄取抑制剂调节其肠肝循环以及进行胆肝分流(而不是肠肝循环)的新型 BA 衍生物来靶向。其他治疗方法更直接地将炎症和/或纤维化作为疾病进展的关键事件。协同针对代谢紊乱、炎症和纤维化的组合策略可能最终是成功治疗这些复杂且多因素疾病所必需的。
©作者。2021 Open Access本文是根据Creative Commons Attribution 4.0 International许可证获得许可的,该许可允许以任何媒介或格式的使用,共享,适应,分发和复制,只要您适当地归功于原始作者(S)和来源,并提供了与Creative Commons许可的链接,并指出是否进行了更改。本文中的图像或其他第三方材料包含在文章的创意共享许可中,除非在信用额度中另有说明。如果本文的创意共享许可中未包含材料,并且您的预期用途不受法定法规的允许或超过允许的用途,则您需要直接从版权所有者那里获得许可。要查看此许可证的副本,请访问http://creativecommons.org/licenses/4.0/。Creative Commons公共领域奉献豁免(http://creativecommons.org/publicdomain/zero/zero/1.0/)适用于本文中提供的数据,除非在信用额度中另有说明。