摘要:卫星系统功能密度与复杂度的不断提升、恶劣的航天环境以及减少操作人员参与的成本控制措施,都日益推动着对故障诊断与健康监测(FD-HM)新方法的开发需求。数据驱动的FD-HM方法利用信号处理或数据挖掘获取系统运行状态的隐含信息,有利于对系统进行粗放而浅显的监控,有望减轻操作人员的工作负担。然而,这些卫星系统FD-HM方法主要以历史数据和一些静态物理数据为驱动,很少考虑仿真数据、实时数据以及二者之间的数据融合,不能完全胜任卫星在轨的实时监控与维护。为保障复杂卫星系统的可靠运行,本文提出了一种新的FD-HM物理-虚拟融合方法——数字孪生。此外,我们提出了卫星电力系统的 FD-HM 应用,以证明所提方法的有效性。
摘要 - ML-KEM和ML-DSA是基于NIST标准的基于晶格后的加密算法。在这两种算法中,K ECCAK是广泛用于得出敏感信息的指定哈希算法,使其成为攻击者的宝贵目标。在故障注射攻击领域,很少有针对K ECCAK的作品,并且尚未完全探讨其对ML-KEM和ML-DSA安全性的影响。因此,许多攻击仍未发现。在本文中,我们首先确定k eccak的各种故障漏洞,这些漏洞通过在实用的循环锻炼模型下操纵控制流来确定(部分)输出。然后,我们系统地分析了错误的K ECCAK输出的影响,并提出了六次针对ML-KEM的攻击,以及针对ML-DSA的五次攻击,包括钥匙恢复,签名伪造和验证旁路。这些攻击涵盖了关键产生,封装,拆卸,签名和验证阶段,使我们的计划成为第一个应用于ML-KEM和ML-DSA的所有阶段。在嵌入式设备上运行的PQClean库的ML-KEM和ML-DSA的C实现中,提出的攻击已验证。实验表明,可以在ARM Cortex-M0+,M3,M4和M33微处理器上使用具有低成本电磁断层注射设置的ARM Cortex-M0+,M3,M4和M33微处理器,可实现89的成功率。5%。一旦断层注射成功,所有提议的攻击都可以通过100%的概率成功。
在应用量子计算中,大量研究致力于分子和材料基态能量估计问题。然而,对于许多具有实际价值的应用,必须估计基态的其他属性。这些包括用于计算材料中电子传输的格林函数和用于计算分子电偶极子的单粒子约化密度矩阵。在本文中,我们提出了一种量子-经典混合算法,使用低深度量子电路以高精度高效地估计此类基态特性。我们对各种成本(电路重复、最大演化时间和预期总运行时间)进行了分析,这些成本与目标精度、光谱间隙和初始基态重叠有关。该算法提出了一种使用早期容错量子计算机进行行业相关分子和材料计算的具体方法。
hal是一个多学科的开放访问档案,用于存款和传播科学研究文件,无论它们是否已发表。这些文件可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
故障注入攻击 (FIA) 是一类主动物理攻击,主要用于恶意目的,例如提取加密密钥、提升权限、攻击神经网络实现。有许多技术可用于引起集成电路故障,其中许多来自故障分析领域。在本文中,我们探讨了 FIA 的实用性。我们分析了文献中最常用的技术,例如电压/时钟故障、电磁脉冲、激光和 Rowhammer 攻击。总而言之,FIA 可以通过使用通常低于数千美元的注入设备安装在 ARM、Intel、AMD 最常用的架构上。因此,我们认为这些攻击在许多情况下都可以被视为实用的,尤其是当攻击者可以物理访问目标设备时。
我们已经看到,当使用 Steane 码对量子比特进行编码时,我们可以横向执行 H 、 S 和 CNOT 门(因此具有容错性)。这些门一起生成 Cliffird 群,而 Gottesman-Knill 定理(我们在第 5 讲中遇到过)告诉我们,Cliffird 群电路可以在经典计算机上有效地模拟。
摘要:电力已成为我们所有人最抢手的便利设施。电力仅限于城市的时代已经一去不复返了。现在,它已经覆盖了世界每个遥远的地方。所以我们现在有一个复杂的电力系统网络。这种电力由输电线路传输。这些故障的发生是自然的。这些故障会损坏许多重要的电气设备,如变压器、发电机、输电线路。对于不间断电源,我们需要尽可能地防止这些故障。线路在输送电力时要延伸很长的距离,因此,该项目需要在尽可能短的时间内检测到故障。用于这些故障检测的基于微处理器和微控制器的系统发展迅速。本文模拟了使用 PIC 微控制器和 ADC 电流传感器检测故障的数值过流继电器。这些继电器比传统的机电继电器和静态继电器更可靠,响应更快。它们具有更大的设置范围、更高的精度、更小的尺寸和更低的成本,以及许多其他功能,例如故障事件记录、自动复位等。使用基于智能 GSM 的故障检测和定位系统来充分准确地指示和定位发生故障的确切位置。这将确保技术人员更短的响应时间来纠正这些故障,从而帮助避免变压器损坏和灾难。该系统使用电流变压器、电压变压器、PIC 16F877 微控制器、RS-232 连接器和 GSM 调制解调器。该系统自动检测故障、分析和分类这些故障,然后使用基于阻抗的算法方法计算故障与控制室的距离。最后,故障信息被传输到控制室。该项目是关于设计数字继电器,当输入值超过继电器中设置的参考值时,检测到故障,然后向断路器发出跳闸信号。总之,由于系统自动准确地提供准确的故障位置信息,因此定位故障所需的时间大大减少。关键词:PIC 微控制器、ADC 电流传感器、GSM。
小型化、成本、功能性、复杂性和功耗是电路设计中需要注意的重要且必要的设计特性。小型化和功耗之间存在权衡。智能技术一直在寻找新的范例来继续改善功耗。可逆逻辑是部署以避免功耗的智能计算之一。研究人员提出了许多基于可逆逻辑的算术和逻辑单元 (ALU)。然而,容错 ALU 领域的研究仍在进行中。本文的目的是通过使用奇偶校验保留逻辑门来弥补容错领域新研究人员的知识空白,而不是通过各种来源搜索大量数据。本文还介绍了一种基于高功能的新型容错算术和逻辑单元架构。以表格形式显示了优化方面的比较,结果表明,所提出的 ALU 架构在可逆逻辑综合的所有方面都是最佳平衡。所提出的 ALU 架构采用 Verilog HDL 进行编码,并使用 Xilinx ISE design suite 14.2 工具进行仿真。所提出的架构中使用的所有门的量子成本均使用 RCViewer + 工具进行验证。
电气工程系是瓦兰加尔国立技术学院(NITW)的最古老的部门之一。成立了该研究所的主要部门之一,该部门于1959年积极从事电气工程领域的教学和研究。凭借出色的教师,该部门在“电力电子与驱动器”,“电力系统工程”,“智能电气网格”的电气和电子工程和研究生(M.Tech)计划的研究生(B.Tech)计划下提供了报名。电气工程计划。该部门设有设备齐全的最先进的实验室,可以增强课程工作并增强研究潜力。该部门拥有一个充满活力的学术界,在学者,研究和工业方面拥有深刻的经验,专门从事教学学习过程,并积极从事尖端的研发活动,具有广泛的专业知识领域;电力电子和驱动器,电力电子设备在节能照明系统中的应用,DSP控制的工业驱动器,电动汽车和无线电力传输以及电力质量改进,电力系统的状态估计和实时控制,ANN和FUZZY逻辑在电力系统中的应用,电力系统,电力系统放松,电力系统瞬态,动力系统瞬态,人工智能和机器学习等