摘要:航空发动机点火系统是发动机的核心部件,包括点火电源、点火激励器、点火导线和点火火花塞等。点火系统的可靠性是发动机能否安全、高效运行的重要因素。为了提高飞机的安全性和持续适航性,开展点火系统故障诊断研究具有十分重要的意义。本文主要对航空发动机点火系统故障的诊断方法研究和诊断系统设计进行研究。针对该问题,设计了点火系统数学模型,并利用该模型模拟点火系统故障,建立点火系统理论数据库。随后,搭建实验系统,模拟实际点火系统故障,生成点火系统仿真数据库。基于点火系统故障数据库,采用波形图像匹配算法,实现真实点火波形与故障数据库波形的比对。最后,提出了基于诊断平台和配备高速数据采集卡的工控机的点火系统故障诊断系统。分析结果表明,该点火系统故障诊断系统能准确识别典型点火故障。
Geoteric 和 Geoteric AI Faults Server 之间的版本必须一致;否则,AI Fault 处理将无法运行。任何次要补丁版本(例如.1、.2 或 .3 等)或主要版本(例如2020、2021 或 2022 等)之间都是如此。有关示例,请参阅下表。
高可靠性要求发动机控制单元如今已出现在许多应用中,通常涉及安全关键考虑,要求在无法容忍意外行为的环境中具有高可预测性和高可靠性的操作!典型应用包括航空电子设备、汽车和货运站重型机械的操作。这些环境表现出高水平的安全敏感方面,其中 ECU 在紧急情况下无法以适当的方式运行可能对生命和/或财产构成威胁,从而证明增加测试成本是合理的。有许多例子表明 ECU 的安全关键操作很重要。对于航空电子设备,一个这样的例子是喷气式飞机发动机的全权数字电子控制器 (FADEC) 的设计验证。FADEC 实际上是喷气式发动机的大脑,控制飞机发动机性能的各个方面,同时提供完全冗余以确保安全关键可靠性。可以理解的是,政府对商用飞机 FADEC 模块测试有着严格的规定,要求在各种硬件故障条件下安全或受控运行。故障插入目前在汽车行业使用的一个示例是动力传动系控制模块 (PCM) 整体测试的一部分。PCM 是现代车辆中最复杂的电子控制单元之一,需要对其功能进行严格而全面的测试。PCM 故障的后果可能会对 X-by-Wire 应用(一个统称,指在车辆中添加电子系统以增强和取代以前通过机械和液压系统完成的任务,如制动或转向)产生更大的影响,这些测试方法的重要性日益增加。“故障插入测试是 ECU 验证的一个重要方面,测试系统故障的想法并不新鲜。”由于当今 ECU 设备的精密性和复杂性很高,因此需要特殊的测试方法。ECU 测试的一个重要方面是将电气故障引入系统,模拟由于腐蚀、短路/开路以及因老化、损坏甚至安装错误而导致的其他电气故障而可能发生的各种情况。故障插入测试是 ECU 验证的一个重要方面,测试系统故障的想法并不新鲜。这种测试方法不仅容易出现人为错误,而且耗时 - 而时间就是金钱。传统测试方法通常涉及手动将电缆插入和拔出配线架,这远非理想。Pickering Interfaces 故障插入 BRIC TM 交换解决方案针对 ECU 验证,为这些实际场景提供了更为复杂的测试方法。
摘要。操作员是指挥和控制系统中的主要漏洞来源之一;例如,79% 的航空致命事故归因于“人为错误”。根据 Avizienis 等人的故障分类系统,操作时的人为错误可以描述为操作员在与指挥和控制系统交互时未能提供服务。然而,之前很少有研究尝试将导致操作员处于错误模式的多种不同故障来源区分开来。本文提出了对 Avizienis 等人分类法的扩展,以便更全面地考虑人类操作员,明确导致操作员偏离正确服务交付的故障、错误状态和故障。我们的新分类法提高了对故障的理解和识别,并提供了关于可以避免或修复人为服务故障的方法的系统见解。我们提供了来自航空和其他领域的影响操作员和容错机制的故障的多个具体示例,涵盖了人机交互循环操作员侧的关键方面。
摘要 — 电网形成 (GFM) 逆变器控制已展示出许多理想的特性,以使可再生资源能够大规模整合到未来的电网中;然而,GFM 逆变器在发生不平衡故障时的性能仍未得到充分探索。本文提出了一种新的电流限制方法,用于 GFM 逆变器处理不平衡故障情况,同时为主电网提供电压支持。所提出的电流限制器结合了动态虚拟阻抗和电流参考饱和限制的概念,所有这些都建立在静止参考系中,以在负载/故障不平衡条件下实现更好的电流限制性能。使用多个 GFM 逆变器进行的全系统全阶瞬态模拟展示了该方法的潜力,并将其性能与最先进的电流限制器进行了对比。模拟结果表明,与电流参考饱和和虚拟阻抗限制相比,所提出的方法的电压平衡性能有所改善。
1 M1和M2:带有赤霞珠的MEDOC站点; S1和S2:带有Semillon的Sauterne站点; BJ1和BJ2:与Gamay的Beaujolais网站; BG1:黑皮诺的勃艮第站点; VL1至VL4:2002年和2005年与Gamay的Loire Valley网站以及2004年的Chenin 2-:未检测到的微生物; +:很少的分离株(<5); ++:一些分离株(5-10); +++:大量分离株(> 10)表3:在含有地球素的发霉葡萄上发现的主要微生物,并从4个法国葡萄栽培区域进行了采样,在健康葡萄上也发现了许多霉菌和酵母。在模具中,
页码简介 1 地图和数据库策略 2 新墨西哥州第四纪断层和褶皱概要 4 第四纪断层和褶皱概述 4 讨论 6 总结 7 致谢 7 贡献者名单 8 数据库术语定义 9 断层和褶皱数据库 11 900,东富兰克林山断层 12 901,Hueco 断层带 15 2001,Gallina 断层 17 2002,Nacimiento 断层 19 2002a,北部区域 20 2002b,南部区域 21 2003,Cañones 断层 23 2004,Lobato Mesa 断层带 25 2005,La Cañada del Amagre 断层带 27 2006,Black Mesa 断层带 30 2007,Embudo 断层 31 2007a, Pilar断层32 2007b,Hernandez断层34 2008,Pajarito断层38 2009,Puye断层41 2010,Pojoaque断层43 2011,阿尔玛东部无名断层46 2012,Mogollon断层47 2013,Mockingbird Hill断层49 2014, Gila 50 南部无名断层 2015 年、Mesita 断层 52 2016 年、Sunshine Valley 断层 54 2017 年、Southern Sangre de Cristo 断层 56 2017a、San Pedro Mesa 断层 57 2017b、Urraca 断层 58 2017c、Questa 断层 60 2017d、Hondo 断层 61 2017e,卡农第 62 节2018 年,Valle Vidal 断层 65 2019 年,红河断层带 67 2020 年,Las Tablas 断层 70 2021 年,Stong 断层 71 2022 年,Los Cordovas 断层 73 2023 年,Picuris-Pecos 断层 75 2024 年,Nambe 断层 77 2025 年,Lang Canyon 断层 80 2026 年,Rendija Canyon 断层 81 2027 年,Guaje Mountain 断层 85 2028 年,Sawyer Canyon 断层 88 2029 年,Jemez-San Ysidro 断层 90
摘要。这项工作调查了NIST美国最近对Ascon Cipher进行的持续故障分析,用于轻巧的加密应用。在持续的故障中,在整个加密阶段,系统中都存在曾经通过Rowhammer注入技术注入的故障。在这项工作中,我们提出了一个模型,以安装Ascon Cipher上的持续故障分析(PFA)。在Ascon Cipher的最终回合中,我们确定置换回合中注入故障的S-box操作P 12很容易泄漏有关秘密密钥的信息。该模型可以存在于两个变体中,其中一个平行S-box调用中的单个输出s-box的实例,同一错误的S-box迭代64次。攻击模型表明,具有经过身份验证的加密使用相关数据(AEAD)模式运行的任何spongent构造都容易受到持续故障的影响。在这项工作中,我们演示了单个故障的场景,其中一旦注射后,在设备关闭电源之前,该故障持续了。使用采用的方法,我们成功地检索了Ascon中的128位键。我们的实验表明,所需查询的最小数字和最大数量分别为63个明文和451个明文。此外,我们观察到,安装攻击所需的查询数量取决于S-box LUT中的故障位置,如报告的图所示,该图报告了最小查询数量和100个键值的平均查询数量。