摘要轴承是带有变速箱的任何机械的关键元素。必须有效诊断轴承断层以确保机械的安全性和正常操作。因此,轴承中机械故障的识别和评估对于确保可靠的机械操作非常重要。这项比较研究表明,通过利用各种机器学习方法,包括SVM,KNN,线性回归,脊回归,XGB回归,ADABOOST回归和CAT促进回归,轴承诊断的性能。轴承就像机械世界的无名英雄一样,在船上从车轮到螺旋桨,都极大地支撑和指导所有事物的平稳运动。然而,与其他机械组件一样,随着时间的流逝,轴承的持续使用会导致磨损,这最终可能导致故障。
摘要:本文的主要目的是作为 PeakVue TM 分析方法的“白皮书”。PeakVue 分析实际上是对金属部件中“应力波”活动的一种测量。此类应力波与冲击、摩擦、疲劳开裂、润滑等有关,会在滚动轴承和齿轮等各种部件中产生故障。例如,当滚动元件撞击轴承滚道上的缺陷时,它将产生一系列应力波,这些应力波会从缺陷位置向多个方向传播。波传播会在机器表面产生波纹,从而会在检测绝对运动的传感器(如加速度计或应变计)中引入响应输出。本文并非暗示应力波分析 (PeakVue Analysis) 是状态监测工具的“万能药”,应该取代目前用于检测和纠正机器故障的所有 PdM 工具。相反,其主要目的是证明应力波分析是一种强大的补充工具,可以检测一系列故障和问题条件,而在某些情况下,仅使用振动分析等技术可能会遗漏这些故障和问题条件。产生应力波的一些常见缺陷包括抗摩擦轴承滚道中的点蚀导致滚子撞击、轴承滚道或齿轮齿(通常在根部)中的疲劳开裂、齿轮齿上的擦伤或划痕、齿轮齿破裂或断裂等。挑战在于检测和量化与能量和重复率相关的应力波活动。这可以识别某些故障,并且根据经验,可以评估检测到的故障的严重程度。本文将开始介绍应力波是什么以及如何测量应力波。它将描述用于测量应力波的一些信号处理方法,并展示这与处理振动信号的不同之处。本文的一个重要主题将涉及确保捕获最佳 PeakVue 数据所需的推荐测量设置。这将包括高通滤波器、分析带宽 (F MAX )、FFT 线数、时域样本数等的正确选择。这些参数的选择可能取决于所寻找的故障类型(裂纹齿轮齿与广义齿
断层,正常——推断处用虚线表示,隐藏处用点表示。下沉侧的球和棒。某些断层上的箭头表示已知的断层面倾角方向;数字表示测量的断层面倾角(以度为单位)。
摘要 — 深度学习的最新进展可以归因于硬件处理器和人工智能 (AI) 加速器性能的持续改进。除了基于冯诺依曼架构的传统 CMOS 加速器外,硅光子学、忆阻器和单片 3D (M3D) 集成等新兴技术也正在被探索作为后摩尔定律的替代方案。然而,由于制造工艺变化、热串扰和老化导致的故障可能会对新兴 AI 加速器的能源效率和性能造成灾难性影响。在本文中,我们分析了几种新兴 AI 加速器在不同不确定性下的性能,并提出了低成本的方法来评估故障的重要性并减轻其影响。我们表明,在所有技术中,不确定性对性能的影响可能会根据故障类型和受影响组件的参数而有很大差异。因此,本文提出的故障关键性评估技术对于提高产量是必要的。
电动机是电力驱动装置中最重要的部件,其运行有时会引发各种故障。除了轴承元件故障外,电气故障是电动机故障的第二大常见原因。据美国电力研究机构 (EPRI) 统计,此类设备所有故障中近 48% 是由于电气系统问题引起的。这些故障可能是转子故障 (12%) 或绕组故障 (36%)。在剩余 52% 的案例中,已证实存在部件的机械损坏。绕组缺陷可能是由于潮湿、污染、绝缘层老化、热过载、电击、电线损坏等原因造成的。在这些情况下,可以观察到能量穿过绝缘层,导致工作温度升高和系统应力增加,直到绕组发生故障。当电动机遭受上述任何损坏时,通常损坏是不可逆的,并导致其效率逐渐下降 [3]。
GPCP全球海数似乎仍然是合理的,但是需要通过改进的数据(例如GPM等)再次检查。如果全球降水幅度存在断层(例如,低估),它可能与小雨或雪无关,而可能与热带地区的激流降雨相关。
借助人工智能,可以通过预测分析提前预测故障或失效,报告异常问题,帮助配置和修复程序,减少开发时间和精力,优化生产流程,并从获取的数据量中提取有用的信息。
以美国地质调查局 1997 年数据为基础 由 Alessandro J. Donatich 编辑和数字制图 手稿于 2000 年 11 月 6 日批准出版 地图 A. 废弃煤矿工作范围以及矿井、平巷、风井和断层的位置 [由于地图比例尺绘制以及需要放大地图符号以增强可读性,因此所示的矿井、平巷和风井的位置均为近似值。有关这些特征位置的更多详细信息,读者应参阅 Myers 等人 (1975) 提供的地图] 地图 B. 废弃煤矿工作面上方的覆盖深度(覆盖层厚度)以及矿井、平巷、通风井和断层的位置 [由于绘制的地图比例和需要放大地图符号以提高可读性,因此所示的矿井、平巷和通风井的位置是近似值。有关这些特征位置的更多详细信息,读者应参阅 Myers 等人 (1975) 提供的地图]
SU 单元提供三种主要产品线:SU3.0、SU4.0 和 SU5.0。基本类型 3.0 包含所有主要保护功能:L(长延时保护)、S(短延时保护)、I(瞬时保护)。允许将此类型用作选择性系统中的上游断路器。高级类型 4.0 和 5.0 分别提供额外的 G(接地故障)和 E(接地漏电)保护。这两个功能均基于差动剩余电流的测量。SU4.0 中的 G 功能旨在记录接地故障,即通过 PE 导体的剩余电流,其水平与标称电流相似(为 I n 的 0.1 倍)。与此相反,SU5.0 还可以记录从 0.5 A 级别开始的漏电流,并且具有调整后的不灵敏时间。因此,它适合用作保护,以防止由绝缘不完善、高阻抗故障等引起的漏电流。