抽象目标。诸如Cherenkov发射(Cherenkov发射)的有效用法对于下一代,具有成本效益和超高敏感性的效果时间的启发时间引起了极大的兴趣。使用自定义,高功率消耗,读出电子设备和快速数字化,已经显示了与宠物大小的BGO晶体低于300 PS FWHM的前景。但是,这些结果无法扩展到由数千个检测器元素组成的完整系统。方法。为了铺平通往全型TOF-PET扫描仪的道路,我们使用Cherenkov发射闪光灯(BGO)研究了及时的ASIC的性能,以及基于FBK的金属沟通的最新SIPM探测器的开发之一。castic是一个高度可辨认的ASIC,具有8个输入通道,12 MW CH -1的功耗和能量测量的极好线性。为了将FASTIC的定时性能置于透视上,进行了比较测量与高功率消耗读数电子设备的比较测量值。主要结果。,对于2×2×3 mm 3和490 ps的最佳CTR FWHM,对于2×2×20 mm 3的Bgo晶体,及其可及时的2×2×3 mm和490 ps。此外,使用20毫米长LSO:CE:CA晶体,已经用castic测量了129 ps fwhm的CTR值,仅与离散HF电子设备获得的95 ps的最新ps略差。明显的能力。在第一次,已经评估了具有可伸缩性ASIC的BGO的定时能力。发现强调了宇宙ASIC在具有出色时机特征的成本效益TOF-PET扫描仪的发展中的潜力。
独特的中央生产过程的测量将使大型强子对撞机物理项目扩展到电弱领域和 QCD 领域成为可能,并且对物理的特殊敏感性超出了标准模型。为此,最近安装了 CMS-TOTEM 精密质子光谱仪,旨在在高亮度大型强子对撞机的正常操作条件下运行。光谱仪由位置和时间探测器组成,安装在距 CMS 两侧交互点约 210 m 的位置,位于称为“罗马罐”的移动结构内,可让您更接近光束。从相互作用中完好无损地出现的散射质子,仅损失了一小部分动量,被光束包络外部的大型强子对撞机磁铁偏转,并用硅像素探测器平面进行测量。相反,需要时间探测器来确定主顶点,利用两侧两个质子的到达时间信息,并在此基础上大大减少由于许多堆积事件而导致的背景。由于探测器将受到高辐射注量(估计约为 3 × 10 15 n eq / cm 2 ),因此 CT-PPS 跟踪器选择了所谓的 3D 硅像素传感器。来自三个主要制造商(CNM、FBK 和 SINTEF)的传感器在实验室和辐照前后的光束上进行了测量,以评估其特性和性能。最终探测器中使用了 CNM 传感器,以及为 CMS 像素跟踪器第一阶段升级而开发的读出芯片。两个六层空间站在 2016/2017 年大型强子对撞机冬季停运结束时进行了组装、测试和安装。探测器的调试正在进行中,通过使用从中心像素跟踪器开始开发的采集软件。检测器已经过校准,能够在 CMS 采集链内获取数据。第一次比对运行的数据已成功收集,分析正在进行中。