触发阀Jodie C. Tokihiro,1英格丽·罗伯逊(Ingrid H.华盛顿西部西雅特市的351700箱351700,美国2 G. Ciamician化学系,意大利博洛尼亚大学3号,356510 NE Pacific Street泌尿外科。华盛顿大学的工程,352600,华盛顿州西雅图,98195 * *共同对应的作者摘要(163/200个或更少)触发阀是毛细管驱动的微流体系统的基本特征,可在毛细管驱动的微流体系统中停止以突然的多态性扩张和释放流体在Orthogonal频道中流动时的流动流体。该概念最初是在闭路毛细管电路中证明的。我们在这里显示触发阀可以在开放的频道中成功实现。我们还表明,可以将一系列的开放通道触发阀与主通道旁边或相对,从而产生分层的毛细管流。,我们根据平均摩擦长度的概念开发了一个用于触发阀的流动动力学的封闭形式模型,并成功地针对实验验证了该模型。对于主要信道,我们根据泰勒 - 阿里斯分散理论以及在渠道转弯中讨论了分层流动行为,并考虑了院长的混合理论。这项工作在自动微流体系统中具有潜在的应用,用于生物传感,居家或护理点样品制备设备,用于3D细胞培养的水凝胶构图以及An-A-A-ChIP模型。关键字:摩擦长度,触发阀,流体动力学,开放的微流体,毛细血管微流体,停止阀简介微流体设备精确地通过小通道移动流体,并且可以使用表面张力效应(毛细管力(毛细管力)(毛细管力),并通过通道化学和表面化学来实现自私自利的操作和自我监管的操作。毛细血管微流体通过自发毛细血管流(SCF)1-3驱动,并通过利用在设备体系结构中编码的毛细管力来执行定时的多步骤过程,而无需外部触发器(例如,按下按钮,按下一个按钮,对电气信号进行编程或其他用户活动)。4–6个触发阀(TGV)是使自主毛细管驱动的主要几何特征/控制元素之一。TGV是修改的被动停止阀,该停止阀将限制的液体释放在正交通道中毛细管驱动的另一个或类似液体的毛细管驱动流动上的限制液体(图1A)。这些瓣膜广泛用于各种闭合通道诊断应用中,例如用于细菌,抗体和蛋白质检测抗体或蛋白质检测的免疫测定以及实时细胞染色。7–10使用封闭通道TGV有大量的理论,实验和应用工作。7–19虽然将TGV扩展到打开微流体系统的概念是简短引入的,但需要更深入的理论发展和实验验证。
穆罕默德啊,你应当记念我使这殿宇成为世人纪念的地方。穆罕默德啊,你应当将易卜拉欣的立足之地变为礼拜的地方。我曾吩咐易卜拉欣和易司马仪说:“你们应当为那些绕行的人净化我的殿宇。”
工程学院,穆罕默迪亚大学马朗,马朗,印度尼西亚B工程学院,加德贾·马达大学,Yogyakarta,印度尼西亚Yogyakarta,计算机和数学科学学院共振成像(MRI)是一种身体感测技术,可以产生器官和组织状况的详细图像。 与脑肿瘤特别相关,可以使用图像检测技术分析所得的图像,以便可以自动对肿瘤阶段进行分类。 检测脑肿瘤需要高度的准确性,因为它与医疗行动和患者安全的有效性有关。 到目前为止,卷积神经网络(CNN)或其与GA的组合取得了良好的结果。 因此,在这项研究中,我们使用了类似的方法,但具有VGG-16体系结构的变体。 VGG-16变体通过修改辍学层(使用SoftMax激活)来减少过度拟合并避免使用大量超参数来增加16层。 我们还尝试使用增强技术来预测数据限制。 使用数据进行癌症成像存档(TCIA)的实验 - 分子脑肿瘤数据(Rembrandt)的存储库包含130例具有不同疾病,成绩,种族和年龄为520张图像的患者的MRI图像。 肿瘤类型为Gliom A,图像分别分为II,III和IV级,分别为226、101和193图像。 用于培训和测试目的的数据将数据划分为68%和32%。 2022。工程学院,穆罕默迪亚大学马朗,马朗,印度尼西亚B工程学院,加德贾·马达大学,Yogyakarta,印度尼西亚Yogyakarta,计算机和数学科学学院共振成像(MRI)是一种身体感测技术,可以产生器官和组织状况的详细图像。 与脑肿瘤特别相关,可以使用图像检测技术分析所得的图像,以便可以自动对肿瘤阶段进行分类。 检测脑肿瘤需要高度的准确性,因为它与医疗行动和患者安全的有效性有关。 到目前为止,卷积神经网络(CNN)或其与GA的组合取得了良好的结果。 因此,在这项研究中,我们使用了类似的方法,但具有VGG-16体系结构的变体。 VGG-16变体通过修改辍学层(使用SoftMax激活)来减少过度拟合并避免使用大量超参数来增加16层。 我们还尝试使用增强技术来预测数据限制。 使用数据进行癌症成像存档(TCIA)的实验 - 分子脑肿瘤数据(Rembrandt)的存储库包含130例具有不同疾病,成绩,种族和年龄为520张图像的患者的MRI图像。 肿瘤类型为Gliom A,图像分别分为II,III和IV级,分别为226、101和193图像。 用于培训和测试目的的数据将数据划分为68%和32%。 2022。工程学院,穆罕默迪亚大学马朗,马朗,印度尼西亚B工程学院,加德贾·马达大学,Yogyakarta,印度尼西亚Yogyakarta,计算机和数学科学学院共振成像(MRI)是一种身体感测技术,可以产生器官和组织状况的详细图像。与脑肿瘤特别相关,可以使用图像检测技术分析所得的图像,以便可以自动对肿瘤阶段进行分类。检测脑肿瘤需要高度的准确性,因为它与医疗行动和患者安全的有效性有关。到目前为止,卷积神经网络(CNN)或其与GA的组合取得了良好的结果。因此,在这项研究中,我们使用了类似的方法,但具有VGG-16体系结构的变体。VGG-16变体通过修改辍学层(使用SoftMax激活)来减少过度拟合并避免使用大量超参数来增加16层。我们还尝试使用增强技术来预测数据限制。使用数据进行癌症成像存档(TCIA)的实验 - 分子脑肿瘤数据(Rembrandt)的存储库包含130例具有不同疾病,成绩,种族和年龄为520张图像的患者的MRI图像。肿瘤类型为Gliom A,图像分别分为II,III和IV级,分别为226、101和193图像。用于培训和测试目的的数据将数据划分为68%和32%。2022。我们发现VGG-16对脑肿瘤图像分类更有效,精度高达100%。关键字 - 分类; MRI;脑肿瘤;神经胶质瘤,CNN; VGG-16。手稿于2022年1月11日收到; 3月23日修订2022; 4月19日接受出版日期,2022年9月30日。国际信息学可视化杂志均在创意共享归因 - 归属共享下的许可。
逐渐从占用空间转移到室外空间。增加室外空气通风,即增加从室外引入的新鲜空气量(假设病原体浓度较低),稀释室内空气中的病原体浓度。增加排出到室外的室内空气量(连同其携带的病原体)可维持建筑压力并增加病原体从占用空间中清除的速度。这种组合方法对于降低空气传播病原体的浓度是有效的,但它不能解决受污染的表面问题,并且可能导致由于需要调节室外空气而增加能源消耗。此外,不受控制的通风会增加房间内的湿度,这可能导致霉菌的产生,并且在某些情况下可能促进其他病原体的传播。此外,根据房间内的气流,可能会形成涡流,一些病原体可能会在房间内气流减少和空气停滞的区域找到避难所。
具有CN 4 Tetrahedra的三维框架的碳氮化物是材料科学的巨大愿望之一,预计硬度大于或可与钻石相媲美。经过三十多年来综合它们的效果,没有提供明确的证据证明其存在。在这里,报道了三种碳 - 亚硝基化合物的高压高温合成,Ti 14-C 3 N 4,HP 126-C 3 N 4和Ti 24-Cn 2,在激光加热的Diamond Anvil细胞中。使用Synchrotron单晶X射线差异来解决和修复它们的结构。物理性质研究表明,这些强烈共价键合的材料,超不可压缩和超智,还具有高能量密度,压电和光致发光特性。新颖的氮化碳在高压材料中是独一无二的,因为在100 GPA以上产生,它们在环境条件下可在空气中回收。
• 得益于技术的进步、太阳能和风能的扩张及其低碳足迹,绿色氢能使发展中国家清洁和可持续能源的未来迫在眉睫。 • 成本效益在促进绿色氢能的大规模普及方面起着至关重要的作用。 • 试点项目的成功实施将为绿色氢能的生产、储存和利用奠定基础。 • 绿色氢能发展道路应从化学原料行业开始,然后是重型和长途运输,最终是电力行业。 • 对于发展中国家,路线图最初重点关注灰氢(蓝氢),目标是到 2030 年代末发展成为氢能出口中心。这一转变将得到旨在提高绿色氢能竞争力的三阶段政策框架的支持。联合国和发达国家推动的国际合作发挥着至关重要的作用。
摘要:与传统的液态电动电池相比,固态锂金属电池提供了较高的能量密度,更长的寿命和增强的安全性。他们的开发有可能彻底改变电池技术,包括创建具有扩展范围的电动汽车和较小的效率便携式设备。使用金属锂,因为负电极允许使用无li的阳性电极材料,扩大了阴极选择范围并增加了固态电池设计选项的多样性。在这篇综述中,我们介绍了用转换型阴极配置固态锂电池的最新发展,由于缺乏活性锂,它们无法与常规石墨或晚期硅阳极配对。电极和细胞配置方面的最新进展已导致使用沙尔氏粉,沙甲质化和卤化物阴极的固态电池的显着改善,包括提高的能量密度,更好的速率能力,更长的循环寿命以及其他显着的好处。为了充分利用固态电池中锂金属阳极的好处,需要大容量转换 - 类型的阴极。虽然在优化固态电解质与转换型阴极之间的界面方面仍然存在挑战,但该研究领域为改进的电池系统提供了重要的机会,并需要继续努力克服这些挑战。
恩智浦在以下条件下提供产品:本评估套件仅供工程开发或评估之用。它以预焊在印刷电路板上的样品IC形式提供,以便于连接输入、输出和电源端子。此评估板可通过现成的线缆连接到主机MCU计算机板,与任何开发系统或其他I/O信号源配合使用。此评估板并非参考设计,并非针对任何特定应用的最终设计建议。应用中的最终器件很大程度上取决于合适的印刷电路板布局和散热设计,以及对电源滤波、瞬态抑制和I/O信号质量的关注。所提供的产品在所需的设计、市场营销和/或制造相关的保护措施方面可能不完善,包括通常在包含该产品的终端设备中发现的产品安全措施。由于产品采用开放式结构,用户有责任采取一切适当的放电预防措施。为了最大限度地降低客户应用的相关风险,客户必须提供充分的设计和操作安全措施,以最大程度地减少固有或程序性风险。如有任何安全问题,请联系恩智浦销售和技术支持服务。