在物理PPA的情况下,电力直接传递给客户;后者将其馈送到网络中或消耗它本身。他负责购买电力并确保网格连接的正确操作。这些合同通常与市政公用事业等供应商结束,并根据固定价格付款。虚拟PPA不涉及电力的物理输送。买方获得了购买原产地保证产生的电力环境利益的权利,双方都提前就固定的电价达成了一致。但是,电本身在电力市场上出售。如果市场价格高于约定的价格,则生产商向买方支付差额。如果市场价格较低,则买方向生产商支付差额。
患者人群将与Mesdopetam计划中以前的临床研究相同。主要功效终点将是Udysrs部分1+3+4。次级功效终点将基于UDYSR,MDS-UPDRS和24小时日记的元素。在第三阶段证明功效所需的估计参与者数量约为250-270名患者,分布在两项平行研究(在主动治疗和安慰剂之间的1:1随机化)中分布,治疗持续了三个月。
T.多元化是从印度尼西亚中部爪哇省马格兰市的农村地区获得的。该植物由Penelitian实验室Dan Pengujian Terpadu(LPPT),Gadjah Mada大学(UGM)确定。按照Muniroh等人概述的方法,使用70%乙醇通过70%乙醇提取多元链球菌的叶子。[12]。随后,通过将1.5 g硫酸锌七含锌硫酸盐溶解在162.5 mL的蒸馏水中,并将2 g羟基氧化钠溶解在50 mL的去离子水液滴中,并将2 g羟基氧化钠溶于162.5 ml的蒸馏水中,从而合成氧化锌(ZnO)纳米颗粒。将沉淀物过滤,用纯净水洗涤,在60°C下干燥24小时,并在400°C下凝固2小时。对于乳液,将7.5毫升的原始椰子油,52.5毫升的补间和25 mL聚乙烯甘油加热至70°C。水相逐渐添加到油相中,同时连续搅拌直至发生皂化。ZnO纳米晶体的浓度为1%。T.多样化锌 - 氧化物纳米颗粒(TDNP)乳液是通过将T. diversifolia提取物溶液与ZnO溶液中的9:1比混合而成制备的,从而浓度为1 mm。然后将混合物在28°C下搅拌几个小时[13]。
基于物理的神经形态计算是当前数字技术的有前途的算法,因为其能量效率,并行性的潜力和较大的带宽。在各种体系结构中,复发性神经网络(RNN)特别适合以频度依赖性(例如音频和视频信号)处理数据[?]。但是,他们解决特定任务的监督培训通常是数据密集型的,需要调整网络的互发矩阵,这是硬件实现的挑战。储层计算(RC)提供了一个框架来通过简化训练过程来克服此问题,从本质上讲,将RNN未经训练以及在结合RNN节点的瞬时响应的输出层上使用简单的lin-1 eR-ear回归[??]。这些考虑因素通过使用七个技术平台(包括微电子学,旋转和光子学[??]。在后一类中,已经提出了各种插曲[? ]包括大规模的自由空间体系结构[???],光反馈体系结构[???]和光子集成电路[??]。这些物理系统已经在各种任务上证明了最先进的性能,包括非线性通道均衡,混乱的时间序列预测和语音识别[?]。],其中一个物理非线性反馈体系结构依赖于时间延迟储层(TDRC)方法[?
脑电图(EEG)和功能磁共振成像(fMRI)是两种常用的非侵入性技术,用于测量神经科学和脑部计算机接口(BCI)中的大脑活动。虽然脑电图具有较高的时间分辨率和低空间分辨率,但fMRI具有高空间分辨率和低时间分辨率。在这篇综述中,我们专注于在神经反馈(NF)中使用脑电图和fMRI,并讨论结合两种方式的挑战,以提高人们对大脑活动的了解并实现更有效的临床结果。已经开发出高级技术来同时记录脑电图和fMRI信号,以便更好地了解两种方式之间的关系。然而,脑过程的复杂性和脑电图和fMRI的异质性质在从组合数据中提取有用的信息时面临着挑战。我们将调查现有的EEG-FMRI组合和最近利用NF EEG-FMRI的研究,从而强调了实验和技术挑战。我们还将确定该领域的剩余挑战。
神经反馈 (NF) 允许通过返回从大脑活动测量中实时提取的信息来对自己大脑活动的特定方面进行自我调节。这些测量通常通过单一模态获得,最常见的是脑电图 (EEG) 或功能性磁共振成像 (fMRI)。EEG-fMRI-神经反馈 (EEG-fMRI-NF) 是一种新方法,它同时提供基于 EEG 和 fMRI 信号的 NF。通过利用这两种模态的互补性,EEG-fMRI-NF 为定义双模态 NF 目标开辟了新的可能性,这些目标可能比单模态目标更强大、更灵活、更有效。由于 EEG-fMRI-NF 允许反馈更丰富的信息,因此出现了一个问题,即如何同时表示 EEG 和 fMRI 特征,以便让受试者实现更好的自我调节。在这项工作中,我们建议在单个双模态反馈(集成反馈)中表示 EEG 和 fMRI 特征。我们介绍了两种用于 EEG-fMRI-NF 的整合反馈策略,并通过组间设计比较了它们对运动想象任务的早期影响。BiDim 组 (n=10) 获得了二维 (2D) 反馈,其中每个维度都描绘了一种模态的信息。UniDim 组 (n=10) 获得了一维 (1D) 反馈,通过将两种类型的信息合并为一个,进一步整合了这两种信息。UniDim 组的在线 fMRI 激活明显高于 BiDim 组,这表明 1D 反馈比 2D 反馈更容易控制。然而,BiDim 组的受试者产生了更具体的 BOLD 激活,右上顶叶的激活明显更强 (BiDim > UniDim,p < 0.001,未校正)。这些结果表明,2D 反馈鼓励受试者探索他们的策略以招募更具体的大脑模式。总而言之,我们的研究表明,1D 和 2D 集成反馈是有效的,但似乎也是互补的,因此可用于双模 NF 训练计划。总之,我们的研究为开发灵活有效的双模 NF 范式铺平了道路,这些范式充分利用双模信息并适用于临床应用。
数字双胞胎范式是一项非常有前途的技术,可以应用于各种领域和应用程序。但是,它缺少用于分类和定义用例的统一框架。本文的目标是解决确定的差距。使用现场研究和自下而上的方法,它旨在对工业数字双胞胎的各种用途进行分类,以帮助正式化概念并合理地通过一系列工业领域的采用。该研究是基于采用基本理论原理从各种垂直领域收集用例的迭代过程。提取,合成,分组和抽象的使用情况方案,以开发可操作的用例分类框架。本文介绍了由此产生的分类法,并通过详细说明实际工业用例(包括其价值主张和应用领域)来说明它。对用例的收集,分类和分析导致对数字双胞胎学术和工业定义中提出的共同方面进行了研究。的目标是将这些方面结合在一起,成为务实而统一的定义,未来工业联盟(AIF)委员会汇聚在一起。这项工作的主要贡献包括从共同的工业和学术角度提出提议,(i)第一个独立于领域的数字双胞胎用例的系统收集,(ii)分析和分类数字双胞胎用例及其需求的综合框架,以及(iii)对工业数字化的共识,以贡献这种结构性的构图和标准化,以实现这种结构化和标准化。