布鲁塞尔,2024 年 3 月 22 日:欧洲燃料联盟欢迎委员会提出的一项授权指令草案,以更新《可再生能源指令 (EU) 2018/2001》(RED) 附件 IX 中的可持续生物燃料和沼气原料清单,这是我们成员继续转型和加速先进生物燃料生产的重要因素。我们欢迎将新原料添加到《可再生能源指令》附件 IX 的 A 部分和 B 部分的提议。拟议将原料添加到 A 部分对欧盟实现雄心勃勃的综合目标具有巨大潜力,即到 2030 年将运输消耗的能源的 5.5% 用作先进生物燃料和非生物来源的可再生燃料 (RFNBO)。将中间作物和在严重退化土地上种植的作物添加到 A 部分将使这些原料被添加到 ReFuelEU Aviation 定义的可持续航空燃料 (SAF) 生产合格原材料清单中。投资这些原料以帮助满足从 2025 年起适用于燃料供应商、联盟机场和飞机运营商的雄心勃勃的 SAF 要求将为市场带来令人鼓舞的前景。附件 IX B 生物燃料和沼气对于实现具有成本效益的运输脱碳至关重要。在 B 部分添加新原料需要提高 1.7% 的上限(RED 第 27.1 (c) (iv) 条)以释放添加原料的潜力。在不影响成员国要求当地提高该上限的权利(RED 第 27.2 条)的情况下,欧洲燃料组织鼓励欧盟委员会考虑行使其权力,通过一项授权法案,并根据 RED 第 27.3 条和第 35 条在联盟层面持续提高上限。欧洲燃料组织总干事 Liana Gouta 表示:“附件 IX 的审查必须体现出对原料分类的长期明确性和可用原料的可扩展性的需要。工业投资和生产燃料的时间线以几十年为单位——因此,原料分类的长期确定性是确保大规模生产生物燃料和沼气的投资的关键因素,以实现欧盟的气候中和目标和能源安全,尤其是对于难以减排的运输部门的脱碳。”
免责声明这一信息是作为由美国政府机构赞助的工作的帐户准备的。美国政府或其任何机构,或其任何雇员均未对任何信息,设备,产品或过程披露或代表其使用将不会侵犯私人拥有的私有权利。参考文献以商品名称,商标,制造商或其他方式指向任何特定的商业产品,流程或服务,并不一定构成或暗示其认可,建议或受到美国政府或其任何机构的支持。本文所表达的作者的观点和观点不一定陈述或反映美国政府或其任何机构的观点和意见。
芳香化学物质在我们的日常生活中起着必不可少的作用,在家庭用品,纺织品,医疗保健,电子产品和汽车中都有广泛的应用,但是它们的生产目前依赖于具有沉重环境负担的化石资源。基于生物资源的芳香化学物质的合成将是提高其可持续性的可行方法。但是,很少有用于实现此目标的方法。在这里,我们提出了一种从5-羟基甲基毛状(HMF)合成芳香族的策略,这是一种在轻度条件下源自糖的有机化合物。HMF首先以两个高收益步骤转换为2,5-二氧甲烷(DOH),这是一种包含三个羰基组的新型C6复合物。随后,在次级胺存在下,DOH的酸性分子内醛醇凝结选择性地产生了15-88%的产量。在没有胺的情况下,在酸性条件下也从DOH合成了工业重要的氢喹酮。使用类似的方法,其中有4,5-二氧甲状腺糖是中间体,我们还能够从HMF制备Catechol,这是一种具有重要工业应用的化合物。所提出的方法可以为生产可持续芳香化学物质的生产铺平道路,并将其工业应用更接近实现生物经济。
建筑规模的增材制造 [1] 正在兴起,以扩大设计选择性并提高生产率。迄今为止,用于砂浆骨干建筑的材料挤出 AM 技术 [2] 势不可挡。砂浆是一种典型的非牛顿流体,特别是宾汉流体。在砂浆流动中,施加的应力应高于屈服应力,这会导致从弹性变形转变为粘性流动。此外,粘弹性行为取决于随时间变化的结构变化,这称为触变性 [3]。在材料挤出增材制造中,加工能力和零件健康度主要取决于砂浆原料的触变性。可泵送性、可挤出性、可粘合性和可施工性是关键性能属性 [4]。其中,在本研究中,通过改变新鲜砂浆原料中的水粘合剂比来评估可施工性。可施工性定义为在珠粒逐层堆叠时遇到的增量重力下维持覆盖珠粒形状的能力。在实际情况下,重力增量周期根据零件设计和构建策略而变化。较小的零件和更快的行进速度减少了垂直重叠的间隔时间。在间隔时间内,重叠的珠子处于静止状态,水分干燥和水合反应改变了内部结构。在这种情况下,竞争
注意:本网络研讨会(包括参与者的所有音频和图像以及演示材料)可能会被录制、保存、编辑、分发、内部使用、发布在 DOE 网站上或以其他方式公开。如果您继续访问本网络研讨会并提供此类音频或图像内容,则表示您同意 DOE 和政府或代表 DOE 和政府出于政府目的进行此类使用,并承认您不会检查或批准此类使用,也不会因此获得报酬。
本综述重点介绍了利用香蕉植物废料生产可生物降解包装的最新进展,强调了其在解决与传统包装材料相关的环境问题方面的关键作用。向可持续包装的转变源于迫切需要对抗塑料污染、减少对不可再生资源的依赖以及促进食品行业的可持续发展。众所周知,香蕉植物在种植和加工过程中会产生大量有机废物,为开发可生物降解包装提供了宝贵的来源。研究人员已成功将香蕉废料转化为创新、可回收和环保的包装解决方案,促进了循环经济。与传统的化石燃料材料相比,可生物降解包装具有许多优势,例如减少对环境的影响和自然分解。最近的进展导致从香蕉废料中提取出多功能生物聚合物,为包装设计提供了灵活性。挑战依然存在,包括可扩展性和经济可行性,需要持续的研究和开发。评估对食品行业的环境影响和影响对于该领域的未来发展至关重要。
[1] N. Li, T. Chang, H. Gao, X. Gao 和 L. Ge, 纳米技术, 2019, 30, 415601。[2] P. Hasse Palharim、B. Lara Diego dos Reis Fusari、B. Ramos、L. Otubo 和 AC Silva Phocheiram、J. Costa Teitoxeiram光生物学。织物。 ,2022,422,113550。[3] YM Shirke 和 SP Mukherjee,CrystEngComm,2017,19,2096-2105。 [4] D. Nagy、D. Nagy、IM Szilágyi 和 X. Fan,RSC Adv. ,2016,6,33743–33754。 [5] 王晓燕,张红,刘琳,李伟,曹鹏,Mater.莱特。 ,2014,130,248–251。 [6] 顾哲,翟天临,高斌,盛晓燕,王燕,傅华,马英,姚建军,J. Phys.织物。 B, 2006, 110, 23829–23836。 [7] T. Peng, D. Ke, J. Xiao, L. Wang, J. Hu 和 L. Zan, J. Solid State Chem. ,2012,194,250-256。 [8] FJ Sotomayor、KA Cychosz 和 M. Thommes,2018 年,18。[9] M. Gotić、M. Ivanda、S. Popović 和 S. Musić,Mater。滑雪。英语。 B,2000,77,193-201。 [10] H.-F.庞晓燕. 项哲杰.李Y.-Q.傅和 X.-T.祖,物理。 Status Solidi A,2012,209,537–544。 [11] B. Gerand 和 M. Fjglarz,J. Solid State Chem. ,1987,13。[12] C. Hai-Ning,智能窗应用的光学多层涂层的制备和表征,米尼奥大学,2005 年。[13] RF Garcia-Sanchez、T. Ahmido、D. Casimir、S. Baliga 和 P. Physra.,J.织物。 A,2013,117,13825–13831。
背景。20230亿吨的报告得出结论,估计可以在美国产生大约600亿加仑的低排放液体燃料,而不会损害市场上食品,饲料,纤维,纤维和森林产品的当前和未来需求。该报告提供了公认的证据,表明在有足够的供求的成熟市场中,可以以合理的价格获得足够的可持续木质纤维素生物质(约15亿吨)。然而,已建立的生物学和化学途径将木质纤维素生物量和废物残留转换为液体燃料需要进一步发展,以降低危险的未来商业规模示范。如果有效地使用了木质纤维素生物量的所有组成部分,则可以进一步改善此类过程的经济学。如果要发酵未来,则需要从这些原料中得出的廉价发酵糖,这些糖以庞大的工业规模可用。
本报告是参与在东南亚开发SAF的各种利益相关者的战略指南。在东盟和国家一级的政策制定者可以利用洞察力来塑造适当解决可持续性风险的强大政策和框架,从而为SAF生产和利用创造了有利的环境,以满足国际可持续性需求以及对航空公司和公司买家的期望。投资者可以利用趋势来在SAF基础设施和项目中做出明智的投资决策。此外,研究人员和学者还可以确定进一步研究的差距和机会,以增强对可持续原料的理解和发展。该报告还为协作,决策和投资提供了可行的建议,以确保一种全面的方法来推进该地区的SAF。