目的:本文概述了在激光加工过程中能够在铝/铝合金金属基复合材料 (MMC) 中实现原位强化的一些陶瓷材料。本文还提出了进一步利用原位强化能力开发高质量 MMC 原料材料的观点。设计/方法/方法:撰写本文所采用的方法包括对 MMC 增材制造 (AM) 相关文献的回顾。结果:人们普遍认为,原位强化方法已被证明比非原位方法更具优势。尽管仍存在一些挑战,例如有害相的形成和低熔点元素的蒸发,但原位强化方法可用于为 MMC 的 AM 定制设计复合粉末原料材料。在激光熔化成所需组件之前对原位金属基复合粉末进行预处理或定制设计,为金属增材制造带来了更多希望。实际意义:尚未解决开发可使用合适的 AM 技术直接制造而无需预先进行混合或机械合金化等粉末加工的 MMC 粉末原料的需求。因此,拥有预处理的原位增强 MMC 原料粉末可以轻松制造 MMC 并具有 AM 技术粉末回收的其他优势。原创性/价值:本文解释的想法与金属基复合材料 AM 加工的材料开发有关。本文指出了 MMC 材料原料粉末开发的未来趋势以及进一步开发 MMC 和 AM 技术的新思路。强调了定制设计复合粉末而不是仅仅混合它们的优势。关键词:金属基复合材料、原位增强、AM 材料、SLM、直接打印对本文的引用应以以下方式给出:UA Essien、S. Vaudreuil,用于增材制造的原位金属基复合材料开发:视角,材料与制造工程成就杂志 111/2 (2022) 78-85。 DOI:https://doi.org/10.5604/01.3001.0015.9997
氢对其对低温GHG经济的潜在贡献引起了重大兴趣,因为其无碳储存化学能的能力。在本报告中,我们考虑了两种脱碳化氢生产的方法,即蓝色和绿色氢,用于发电,工业加热以及美国的工业原料。我们发现,使用蓝色氢来减少炼油和氨制造中的原料排放量有近期的机会。对于绿色氢具有竞争力,需要大量降低生产和存储成本。但是,如果这些成本足够下降,则绿色氢具有广泛的潜力:用于长期储能,工业热以及作为炼油,化学物质和钢的原料。然后,我们评估政策选择,以支持权力和工业部门中的脱碳化氢。税收抵免具有熟悉的优势(例如,CCUS的45Q税收抵免和风的PTC税收抵免),而不是在部门内提高价格。尽管对脱碳氢的有效税收抵免比45Q更为复杂,但我们发现它可以正确解释脱碳化氢的气候益处。
同时,欧洲的千兆交易的兴起有望产生大量的生产废料(即从分配的用于测试,维护和翻新与销售无关的产品和电池中,这将极大地有助于回收原料,尤其是在短期内。在十年结束时,将有超过100 gwh的生产废料回收,代表原料的主要来源。这也是报废量达到顶峰然后稳定的时间,因为公司提高了生产和成熟,从而达到了运营效率。从2030年代中期开始,EOL电池的涌入将逐渐开始统治回收流,占2035年的原料的72%,到2040年。
减少对化石原料的依赖将有助于实现一个更可持续的社会,如联合国可持续发展目标中所规定的12。1目前,用于合成聚合物的原料的90%,尤其是塑料,依赖于石油和天然气。2估计产生的石油的4 - 8%用于制造塑料。自1964年以来,塑料的生产增加了20倍,预计到2050年将几乎四倍。因此,为了满足对塑料和聚合物的需求,在减少石油和天然气的消耗的同时,必须开发合成这些材料的新方法。一种潜在的解决方案是将生物量用作聚合物生产的原料。纤维素是未来可持续聚合物原料的明确选择。它是最丰富的生物可生产和
燃料电池经常提出,但是它们不能很好地构成质量,因为它们要么需要降落的反应物质量,要么需要更多的能量和生产量才能使反应物与燃料电池提供的原位。生物关系(依靠微生物将有机原料直接转化为热量或其他商品,例如甲烷,然后可以用来产生能力),也已被提议作为发电技术选择。但是,微生物的引入可能会因行星保护的限制而变得复杂。此外,如果由于存在高氯酸盐或其他化学物质及其副产品,可能需要采取原料/生物量补充涉及火星土壤,则可能需要采取其他安全/加工措施。
氢化转化和氢化物将生物基本原料纳入航空燃料 - 生物基和废物流的纯化和价值,固定床催化剂的合成,长期飞行量表测试
2024 年 12 月 19 日 主题:非政府组织呼吁欧盟委员会尊重《可再生能源指令》中的法律义务,审查关于将原料扩展到高碳储量地区的授权条例 尊敬的欧盟委员会主席冯德莱恩 (von der Leyen), 尊敬的副主席里贝拉 (Ribera) 和委员胡克斯特拉 (Hoekstra)、约尔根森 (Jørgensen) 和谢夫乔维奇 (Šefčovič), 下列签名组织致信您,内容涉及生物燃料以及《可再生能源指令》中授权条例 2019/807 的持续修订,该条例涉及确定高间接土地利用变化风险原料,对于这些原料,生产区域显着扩展到高碳储量土地。 2019 年,委员会根据全球相关粮食和饲料作物生产扩大状况报告,通过了一项关于将原料扩展到高碳储量地区的授权条例。该法规包括一种方法,用于确定任何给定原料是否具有导致“间接土地利用变化”的高风险所需的标准。在此背景下,欧盟委员会有法律义务在 2021 年 6 月 30 日之前审查 2019 年原料扩张报告 1 的所有相关方面。因此,到 2023 年 9 月,欧盟委员会应该根据本报告的最终结果,审查授权法规中规定的标准,并在必要时进行修订 2 。但是,该报告尚未更新,因此授权法规尚未审查。只有由欧盟委员会技术援助部门领导的数据修订第一阶段的初步结果已公开。这些数据记录了截至 2019 年的森林砍伐率,并显示大豆扩张与高碳储量区域重叠的百分比已从之前的 8% 增加到现在的 9.5%。这使得大豆非常接近《授权法案》规定的 10% 的门槛,这将使其被归类为高 ILUC 风险原料。第一阶段研究的结果纠正了委员会 2019 年对高碳储量土地碳损失的假设 3 ,这意味着当前 10% 的门槛应该降低到 8% 4 ,从而自动将大豆归类为高 ILUC 风险原料。2019 年,棕榈油被归类为高 ILUC 风险原料,导致印度尼西亚和马来西亚向世界贸易组织挑战这些措施。然而,世贸组织于 2024 年 3 月就与马来西亚的争端作出裁决,支持欧盟停止将棕榈油生物柴油归类为可再生燃料的决定。
