高维脑电图 (EEG) 协方差矩阵的维数降低对于在脑机接口 (BCI) 中有效利用黎曼几何至关重要。在本文中,我们提出了一种新的基于相似性的分类方法,该方法依赖于 EEG 协方差矩阵的维数降低。传统上,通过将原始高维空间投影到一个低维空间来降低其维数,并且仅基于单个空间学习相似性。相反,我们的方法,多子空间 Mdm 估计 (MUSUME),通过解决所提出的优化问题获得多个可增强类可分性的低维空间,然后在每个低维空间中学习相似性。这种多重投影方法鼓励找到对相似性学习更有用的空间。使用高维 EEG 数据集(128 通道)进行的实验评估证实,MUSUME 在分类方面表现出显著的改进(p < 0.001),并且显示出超越仅依赖一个子空间表示的现有方法的潜力。
Creutzfeldt-Jakob病(CJD)是一种罕见的,快速进行的,无法治愈的神经退行性疾病,由王室引起。它总是致命的,并在可传播的海绵状脑病下分类。该案件报告提出了一名66岁的沙特女性,由于认知能力下降,她被接纳为神经病学部门。患者接受了诊断评估,包括磁共振成像(MRI)和脑电图(EEG)。在住院和社会心理支持的一个月后,患者稳定并随后出院。总而言之,虽然CJD是一种罕见的疾病,但应在患有快速进行性痴呆症的患者的鉴别诊断中考虑。早期和准确的诊断对于将这种不可治疗的疾病与其他可治疗形式的快速进行性痴呆并促进潜在的未来治疗干预措施是至关重要的。
2.2准备和给药指令在静脉输注之前重构Grafapex。grafapex是一种危险药物。遵循适用的特殊处理和处置程序。1 - 使用无菌技术准备grafapex。- 计算剂量,所需的Grafapex解决方案的总体积以及所需的grafapex小瓶数量。- 在其原始玻璃容器中使用表2中描述的原始玻璃容器中的最终浓度约为0.05 g/ml的Grafapex,在其原始玻璃容器中重新构造了每个小瓶,注射0.9%氯化钠,5%右旋糖注射或无菌水。由于最终溶液的低渗透性,不建议在小于或等于12岁的儿童中仅用无菌水进行注射。
项目名称:二维量子材料和超导电子学。描述:研究重点是 Nb 基二维材料,特别是二硫化铌 (NbS₂) 和二硒化铌 (NbSe₂),以及它们在超导场效应晶体管 (FET) 中的应用。这些材料因其独特的特性而处于材料科学的前沿,包括单层超导性[1]。超导性的特点是零电阻和排除磁场,是现代材料科学的基本原理。虽然已经提出了许多利用超导性的设备并付诸实施,但在创造可扩展的高质量材料和设备方面仍然存在挑战[2-4]。传统的制造方法,如溅射,通常会导致材料质量不理想,特别是对于需要精确控制厚度和纯度的应用[5]。该项目旨在通过利用二维过渡金属二硫属化物 (TMDC) 的卓越特性来解决这些限制,这些特性可以精确控制材料厚度和晶体纯度。在本研究中,候选人将专注于合成基于 Nb 的 2D 材料并将其集成到器件架构中以创建超导 FET。这些器件将利用电场来调节超导性,实现新功能并为超导电子学的潜在突破铺平道路。这项工作将涉及在洁净室环境中进行先进的材料合成、广泛的特性描述和器件制造,以及传输测量以研究器件在不同条件下的行为。该项目提供了为材料科学的变革领域做出贡献的机会,并有可能产生重大的技术影响。成功的候选人将加入一个充满活力的跨学科研究团队,该团队配备了最先进的设施,并受益于该领域领先研究人员的指导和合作。外部参考:[1] Xi 等人,《自然物理》,12(2):139–143 (2016) [2] Puglia 等人,《应用物理快报》,116(25) (2020)。 [3] De Simoni 等人,Nature Nanotechnology, 13(9):802–805 (2018) [4] Paolucci 等人,Nano letters, 19(9):6263–6269 (2019) [5] Durrell 等人,Reports on Progress in Physics, 74(12):124511 (2011). 主要指导老师:Camilla Coletti ( 2D 材料工程 ) 其他指导老师:Antonio Rossi ( 2D 材料工程 ) 关键专业知识:
基于动物数据及其作用机理,ITOVEBI在给孕妇时会造成胎儿伤害[见临床药理学(12.1)]。没有关于在孕妇中使用Itovebi来告知药物相关风险的可用数据。在一项动物繁殖研究中,在器官发生期间,口服对怀孕大鼠的口服给予孕妇,导致不良发育结果,包括胚胎 - 屈服死亡率,结构异常,以及在母亲暴露时的增长改变,大约等于在建议的剂量9 mg/DAIN的人类暴露量基于9 mg的剂量(请参阅基于数据)。建议孕妇对胎儿潜在风险的生殖潜力。
推荐引用 推荐引用 Cicerchia, Lillian 和 Bonefeld, Werner (2024) “经济强制的批判理论,Werner Bonefeld,访谈,”《解放:批判性社会分析杂志》:第 3 卷:第 3 期,第 3 篇文章。DOI:https://doi.org/10.55533/2765-8414.1106 可从以下网址获取:https://scholarsjunction.msstate.edu/emancipations/vol3/iss3/3
更安全食品的五个关键突出显示了五个关键信息:保持清洁,分离生和煮熟的食物,煮至其完成,以安全的温度存放食物,并使用安全的水和饮水机。这张海报已翻译成87多种语言,以分享谁在全球范围内的食物卫生信息。微生物生长因子可以分为固有的(在食物内部)和外在(食物之外)。控制微生物生长的主要因素是营养,温度,pH,水活动和大气。让我们分开打破。内在因素包括: - 营养:细菌需要营养才能成长,就像所有生物一样。- pH:衡量酸性或碱性食物的量度。较低的pH表示更多的酸性(0-7),较高的pH表示更多的碱性(7-14)。中性pH是7,就像蒸馏水一样。- 水活动:食物中的自由水量。自由水较少的食物持续更长的时间,并支持较慢的微生物生长。减少游离水的示例包括: - 加入盐结合水分子 - 使用糖结合水分子,例如在少量酸(低pH)和大量水的果酱制作食物中称为潜在危险食品(PHFS)。这些食物很容易被微生物宠坏,并从监管机构那里获得额外的检查。外部因素包括: - 温度:我们对控制最大的一个因素。大多数引起疾病的微生物在40°F -140°F之间生长,称为危险区域。- 大气 - 湿度(与大气有关)高温加速细菌,霉菌和酵母的生长,从而降低了保质期并损害安全性。食物通常在低温下使用寿命更长。至关重要的指南是在“危险区域”中存储不超过两个小时的食物。用气体包装的冷藏食品(例如预切沙拉)的升高利用一种大气修饰技术,可以显着延迟变质。包装氛围有三种主要类型:1。有氧运动(常规空气)2。改良的气氛(定制气体混合物)3。真空包装(无氧)没有包装,新鲜食品由于大气中存在氧气而迅速破坏,这促进了有害细菌(如假单胞菌)的生长。改良的大气包装涉及将食物放入塑料袋中,这些塑料袋包含没有氧气的气体。此方法可有效防止导致变质的微生物的生长。真空包装,用于冷藏肉和某些蔬菜产品,涉及去除空气以最大程度地减少氧化并减少变质。一些细菌和酵母对特定食物有偏爱;例如,在牛奶和肉类等潮湿的环境中,细菌和酵母在牛奶和肉类等潮湿的环境中迅速生长,在干燥的物质上壮成长。要确保在家中食品安全,请遵守基本准则: *保持清洁度 *正确存储食物 *彻底 *彻底 *监测温度 *使用清洁水无法遵循这些准则,可能会导致200多种不同的疾病,从腹泻到癌症,根据世界卫生组织(WHO)(WHO)。使用厕所时,请确保保持清洁度。在食用之前将食物彻底加热。在厨房中,必须对所有用于烹饪的表面和设备进行彻底清洁和消毒。将昆虫,害虫和其他动物远离厨房区域和食物。应始终将原始食物和煮熟的食物分开,以避免交叉污染。准备生肉,家禽或海鲜,使用刀具和切割板等单独的工具,然后将它们存放在防止与准备好的食物接触的容器中。彻底烹饪所有肉,家禽,鸡蛋和海鲜,尤其是在使用温度计确保达到70°C时。作为汤和炖菜,请在食用前将它们带到沸点。在安全温度下储存煮熟和易腐食品:在食用前迅速冷藏或在60°C以上的热量低于60°C。切勿将煮熟的食物放出超过2个小时。通过遵循包装说明,可以安全地将冷冻食品安全地放冷冻食物,理想情况下是在冰箱中使用干净的水。处理食物时,使用干净的材料并选择用于安全的新鲜有益健康的成分,例如巴氏灭菌牛奶。如果原始食用,洗净水果和蔬菜并避免过期食品。
Gulbenkian分子医学研究所(GIMM)在“ T-Cell急性淋巴细胞性白血病中有针对性的年代疗法”的项目下,呼吁一项研究奖学金,并获得了基金会的资助支持/ mct通过国家基金(PIDDAC)。科学领域:癌症学,癌症。奖学金获得者 /入学要求:任何满足要参加非学位学位课程(与工作计划有关的领域)所必需条件的国家,外国和无国籍候选人。被认为是“非学术学位课程”,这些课程是在3月24日的第4款第4条NR 74/2006第4条第3款中提到的课程,只要它们是当前版本的,只要它们是在高等教育机构和至少一个R&D之间的合作和合作的一项R&D之间的合作。工作计划和目标:我们先前证明了PI3K-AKT信号的构型激活发生在大多数T-ALL患者中,并且经常因CK2介导的PTEN转移后PTEN失活而经常发生,PTEN是该途径的主要负面调节剂。ck2是一种高度多效激酶,也显示出通过磷酸化BMAL1和PER2来调节昼夜节律分子钟(CMC)。这种串扰的存在使我们假设PI3K-AKT途径过度激活可能以T-All细胞的昼夜节律波动。我们的初步数据支持此概念:PI3K-AKT信号传导以昼夜节律的方式振荡,以不同的T-ALL细胞系(Molt4,HPB-All等)振荡。申请人必须持有以下要求: - 生物医学研究中的MSC学位持有人,重点是肥大学; - 先前在信号转导途径方面的专业知识(高度重视); - 先前在主要样品以及粘附和悬浮细胞系的细胞培养中经验(强制性); - 以前的分子生物学技术经验(DNA和RNA提取,QPCR,RT-PCR,Western blot)(强制性); - 在病毒上清液的生产和处理方面的经验(高度重视); - 流式细胞仪的先前经验(强制性); - 以前的殖民地管理经验(高度重视); - 以前具有实用体内测定的经验(强制性); - 高责任感,组织和方法; - 积极的个性; - 能够独立工作,也可以具有团队精神; - 对英语的出色知识,包括口语和书面知识。重要的是,我们发现在MOLT4细胞中三种不同的体外药物给药方案之间,对PI3K特异性抑制剂(BKM-120/buparlisib)的敏感性显着差异。
帮助研究人员完成资本采购流程,共同编写和编辑 15 份唯一来源和单一来源论证,并与大学设施部门合作准备设备安装空间,包括:手持式 X 射线荧光光谱仪、同位素比质谱仪、研究级荧光显微镜、超高效液相色谱质谱仪、多模协作机器人系统、一套学生级荧光显微镜、实验动物围栏、激光扫描共聚焦显微镜服务合同、物理系光学研究实验室的光学元件包、透射电子显微镜软件升级、电子背散射衍射检测器、蒙特克莱尔州立大学气象站、电感耦合光学发射光谱仪、离子色谱仪、Western Blot 系统、一套生物安全柜。• 与院长和大学设施部门合作,重新设计了 CCIS 的四楼
多伦多大学的加速联盟 (AC) 正在引领科学发现的变革,这将加速技术开发和商业化。AC 是一个由学术界、工业界和政府组成的全球社区,它利用人工智能、机器人技术、材料科学和高通量化学的力量来创建自动驾驶实验室。这些自主实验室快速设计可持续、健康和有弹性的未来所需的材料和分子,应用范围从可再生能源和消费电子产品到药物。AC SDL 将推动人工智能驱动的自主发现领域,并开发应对社会最大挑战所需的材料和分子,例如气候变化、水污染和未来的流行病。