摘要:本研究采用有限元法(FEM)对层压复合材料结构进行拓扑优化数值研究。在该方法中,层片方向被排除在优化之外。介绍了中空长航时无人机机身结构框架的几何优化。目标函数中使用了最小应变能,优化约束为减重20%。在进行初步分析之前,对以前发表的文献中不考虑方向的拓扑优化进行了基准研究。进行了收敛研究,以获得FEM技术中合适的网格尺寸,该技术利用了四节点壳单元。有限元分析与优化结果表明,新型框架复合材料机身中空长航时无人机结构设计满足适航标准STANAG 4671规定的结构强度要求。
本文介绍了一种具有改进的流量灵敏度的 μ-科里奥利质量流量传感器装置。建立了一个 FEM 模型,该模型可以估算 μ-科里奥利装置的各种参数,例如共振频率、弹簧常数和科里奥利力。然后,这些参数用于分析模型以确定流量灵敏度。所提出的 FEM 模型可以快速模拟这些属性,通过改变设计的多个维度和其他属性来实现优化,并观察它们对流量灵敏度的影响。根据模拟结果,制造了三种装置。所有装置都经过了特性分析,并对不同装置以及测量结果和模拟结果进行了比较。该模型预测的共振频率误差小于 10%,但 1 个(共 6 个)装置除外。根据装置的类型,预测的灵敏度准确度在 6-40% 以内。与典型尺寸的参考装置相比,流量灵敏度提高了约 4-11 倍。
摘要。印刷电路板 (PCB) 是环氧树脂浸渍和固化的反编织玻璃纤维 (例如 FR4) 板,层压在薄铜板之间。PCB 的性质本质上是各向异性和不均匀的,但之前的 PCB 模态 FEM 假设了各向同性、各向异性 (横向各向同性和正交各向异性) 材料特性,并显示出与特定场景的测试数据有良好的相关性 [1-3]。本文详细介绍了一项研究计划的一部分,旨在更好地理解如何准确模拟 PCB 的动态行为。分析了材料各向异性的影响的新研究,特别是材料正交平面定义 (𝐸 ௫ 和 𝐸 ௬ ) 对特征频率的影响。使用 Steinberg 完善的理论和其他人的经验数据 [4, 5] 创建、验证和确认了 JEDEC PCB 的模态 FEM。使用参数模态 FEM 检查了 𝐸 ௫ 、𝐸 ௬ 和 𝐸 ௭ 对 PCB 特征频率的相对贡献,分析了材料各向同性和各向异性的作用。还分析了典型 JEDEC PCB 的横向各向同性材料特性的影响。此分析详细说明了准确建模 PCB 特征频率所需的网格密度。结果表明,𝐸 ௭ 增加 100% 只会导致特征频率差异 0.2%,而 𝐸 ௬ 增加 100% 会导致特征频率差异 1.2%。正交各向异性平面定义(交替使用 𝐸 ௫ 和 𝐸 ௬ )对 JEDEC PCB 的影响使特征频率发生了 7.95 % 的偏移。
摘要 — 本文介绍了一种使用 Abaqus 对新型建筑起重机进行设计和 FEM 分析的方法。其目的是研究目前使用的传统建筑起重机,并用廉价、安全、可靠的建筑起重机取而代之。这些传统起重机由桉树脚手架制成,用于建造塔架,塔架上装有用于引导小车和吊钩组的悬臂部分。吊钩组在悬臂小车臂上移动,不旋转。悬臂小车臂是起重机的一部分,用于承载重量。带有滚筒的电机通过钢缆输送建筑材料。在 Solid Works 建模软件中创建了三维实体零件,并将其导出到 Abaqus 进行应力分析。在运行过程中,迫使进行静态和动态载荷的最危险条件单词 - 建筑塔起重机,乳房钻头,副吉布起重机,FEM分析
与共面波导 (CPW) 谐振器相比,紧凑型电感电容 (LC) 谐振器具有简单的集总元件电路表示,但通常需要复杂的有限元法 (FEM) 模拟才能进行精确建模。这里,我们为一系列共面 LC 谐振器提供了一种简单的分析模型,其中的电气特性可以直接从电路几何形状中获得,并且具有令人满意的精度。我们对 10 个高内部品质因数谐振器(Q i ≳ 2 × 10 5)进行的实验结果,频率范围大约从 300 MHz 到 1 GHz,与推导的分析模型和详细的 FEM 模拟都显示出良好的一致性。这些结果展示了设计谐振频率偏差小于 2% 的亚千兆赫谐振器的能力,这具有直接的应用,例如,在超灵敏低温探测器的实现中。所实现的平方毫米量级的紧凑谐振器尺寸表明在单个芯片上集成数百个微波谐振器以实现光子晶格的可行方法。
这项研究重点是针对电池组装过程的专业机械夹具的设计和分析,特别是对相关力和变形的研究。该项目从全面的市场研究开始,以确定现有的解决方案。这是使用计算机辅助设计(CAD)的需求定义和迭代设计过程。随后,使用Abaqus CAE中的有限元方法(FEM)进行了全面的力和变形分析。结果表明,设计的抓手可以承受最小变形的施加载荷,表明它具有足够的结构刚度。证明了有限元方法(FEM)分析在评估提出设计的生存能力时的实用性。根据本研究的设计和分析,它设法提出并开发了一种比市场上可用的抓地力范围更高的抓地力范围。这些发现有助于更深入地理解抓地力设计对预期载荷的适用性,并强调了所采用的设计方法的重要性。
经颅磁刺激 (TMS) 线圈位置和脉冲波形电流通常用于在目标大脑区域实现指定的电场剂量。通过包括皮质上电场剂量的实时精确分布,可以改进 TMS 神经导航。我们介绍了一种方法并开发了软件来实时计算大脑电场分布,使其易于集成到神经导航中,并具有与一阶有限元法 (FEM) 求解器相同的精度。首先,将头部和允许的线圈位置之间的表面上的白噪声磁流产生的电场的跨度基组 (< 400) 正交化以生成模式。随后,利用互易和惠更斯原理通过 FEM 计算头部和线圈之间的表面上的模式引起的场,这些场与分离表面上的在线(实时)计算的一次场结合使用以评估模式扩展。我们对 8 名受试者的 FEM 和实时计算的 E 场进行了比较分析,使用了两种头部模型类型(SimNIBS 的“headreco”和“mri2mesh”管道)、三种线圈类型(圆形、双锥和 8 字形)和 1000 个线圈位置(48,000 次模拟)。任何线圈位置的实时计算都在 4 毫秒 (ms) 以内,适用于 400 种模式,并且需要 GPU 上不到 4 GB 的内存。我们的解算器能够在 4 毫秒内计算 E 场,使其成为将 E 场信息集成到神经导航系统中的实用方法,而不会对帧生成造成重大开销(分别在 50 毫秒和 20 毫秒内每秒 20 帧和 50 帧)。
随着对脑震荡损伤的长期后果的关注日益增加,人们开始重视开发能够准确预测大脑对冲击负荷的机械响应的工具。虽然有限元模型 (FEM) 可以估计动态负荷下的大脑响应,但这些模型无法快速(几秒内)估计大脑的机械响应。在本研究中,我们开发了一个多体弹簧质量阻尼器模型,该模型可以估计大脑对围绕一个解剖轴或同时在三个正交轴上施加的旋转加速度的区域运动。总的来说,我们估计了 50% 人类大脑内 120 个位置的变形。我们发现多体模型 (MBM) 与计算的有限元响应相关,但不能精确预测(平均相对误差:18.4 6 13.1%)。我们使用机器学习 (ML) 将 MBM 的预测与负载运动学(峰值旋转加速度、峰值旋转速度)相结合,并显著减少 MBM 和 FEM 之间的差异(平均相对误差:9.8 6 7.7 %)。使用独立的运动损伤测试集,我们发现混合 ML 模型也与 FEM 的预测有很好的相关性(平均相对误差:16.4 6 10.2 %)。最后,我们使用这种混合 MBM-ML 方法来预测出现在大脑不同位置的应变,对于复杂的多轴加速度负载,平均相对误差估计范围为 8.6 % 到 25.2 %。总之,这些结果展示出一种快速且相当准确的方法,用于预测大脑对单平面和多平面输入的机械响应,并提供一种新工具来快速评估整个大脑撞击负载的后果。 [DOI: 10.1115/1.4046866]
摘要:地面激光扫描 (TLS) 有助于检测斜坡和陡坡的不安全行为。它还有助于评估土方工程的稳定性。土方结构通常由合格的地面材料制成。人们可以区分点状结构,例如土丘、堡垒和水坝,以及线性结构,例如道路、铁路和防洪堤。本文涉及监测和分析与选定土方结构不稳定行为相关影响的问题。TLS 能够以简单和自动化的方式遥感表面变化。使用激光扫描仪进行定期的多次测量,以长期监测选定物体的行为。使用有限元法 (FEM) 等离散数值模型考虑了基质的岩土特性,并允许对此类结构进行风险评估和稳定性测试。结构的数值模型以及基质的参数被引入到 FEM 包中。这样就可以分析应力、应变和位移,以及不同的载荷情况。本文介绍了几个选定的土体结构,并对其进行了上述分析。