植物错综复杂地部署国防系统,以应对多种生物和非生物应力。OMICS技术,跨越基因组学,转录组学,蛋白质组学和代谢组学,已彻底改变了植物防御机制的探索,响应各种压力源来揭示分子复杂性。但是,OMIC数据的复杂性和规模需要用于有意义的见解的复杂分析工具。 本评论深入研究了人工智能算法的应用,尤其是机器学习和深度学习,这是在植物防御研究中解密复杂的OMICS数据的有希望的方法。 概述涵盖了关键的OMICS技术,并解决了当前AI辅助OMICS方法中固有的挑战和局限性。 此外,它考虑了这个动态场中的潜在未来方向。 总而言之,AI辅助的OMICS技术提出了强大的工具包,使对植物防御的分子基础有深刻的了解,并在气候变化和新兴疾病的情况下为更有效的作物保护策略铺平了道路。但是,OMIC数据的复杂性和规模需要用于有意义的见解的复杂分析工具。本评论深入研究了人工智能算法的应用,尤其是机器学习和深度学习,这是在植物防御研究中解密复杂的OMICS数据的有希望的方法。概述涵盖了关键的OMICS技术,并解决了当前AI辅助OMICS方法中固有的挑战和局限性。此外,它考虑了这个动态场中的潜在未来方向。总而言之,AI辅助的OMICS技术提出了强大的工具包,使对植物防御的分子基础有深刻的了解,并在气候变化和新兴疾病的情况下为更有效的作物保护策略铺平了道路。
沙门氏菌是一种粮食性的致病细菌,在全球范围内引起沙门氏菌病。此外,沙门氏菌被认为是食品安全和公共卫生的严重问题。几种包括氨基糖苷,四环素,酚和B-乳酰胺的抗菌类别用于治疗沙门氏菌感染。抗生素已经开了数十年,以治疗由人类和动物医疗保健中细菌引起的感染。然而,大量使用抗生素会在包括沙门氏菌在内的几种食源性细菌中产生抗生素耐药性(AR)。此外,沙门氏菌的多药耐药性(MDR)急剧增加。除了MDR沙门氏菌外,全球据报道,除了MDR沙门氏菌,广泛的耐药性(XDR)以及PAN耐药(PDR)沙门氏菌。因此,增加AR正在成为严重的普遍公共卫生危机。沙门氏菌开发了许多机制,以确保其对抗菌剂的生存。针对这些抗生素的最突出的防御机制包括酶促失活,通过EF伏特泵从细胞中排出药物,改变药物的结构以及改变或保护药物靶标。此外,沙门氏菌的生物膜和质粒介导的AR形成,增强了其对各种抗生素的耐药性,使其在医疗保健和食品行业环境中都是充满挑战的病原体。本综述仅着重于提供沙门氏菌中AR机制的详细概述。
传统可靠性评估方法侧重于可靠性预测,而 PoF 方法则关注预防、检测和纠正与产品设计、制造和操作相关的故障。PoF 方法的基础是产品要求的定义,包括在操作和非操作期间暴露于温度、湿度、振动、冲击、腐蚀、辐射和电力等应力,以确定产品可能如何发生故障。然后进行可靠性评估,针对主要故障部位,并确定产品是否能达到预期寿命,或者是否必须采取其他措施来提高其稳健性。
联合学习(FL)促进了客户在培训共享的机器学习模型的情况下合作,而无需公开各个私人数据。尽管如此,FL仍然容易受到效用和隐私攻击的影响,特别是逃避数据中毒和建模反演攻击,从而损害了系统的效率和数据隐私。现有的范围通常专门针对特定的单一攻击,缺乏普遍性和全面的防守者的观点。为了应对这些挑战,我们介绍了f ederpography d efense(FCD),这是一个统一的单框架,与辩护人的观点保持一致。FCD采用基于行的转座密码加密,并使用秘密钥匙来对抗逃避黑框数据中毒和模型反转攻击。FCD的症结在于将整个学习过程转移到加密的数据空间中,并使用由Kullback-Leibler(KL)差异引导的新型蒸馏损失。此措施比较了本地预审最终的教师模型对正常数据的预测以及本地学生模型对FCD加密形式相同数据的预测的概率分布。通过在此加密空间中工作,FCD消除了服务器上的解密需求,从而导致了计算复杂性。我们证明了FCD的实践可行性,并将其应用于对基准数据集(GTSRB,KBTS,CIFAR10和EMNIST)上的Evasion实用程序攻击。我们进一步扩展了FCD,以抵御CI-FAR100数据集中的Split FL中的模型反转攻击。与第二最佳方法相比,我们在各种攻击和FL设置中进行的实验表明了对效用逃避(影响> 30)和隐私攻击(MSE> 73)的实际可行性和巨大性。
在真菌,细菌和病毒感染期间,果蝇果蝇在强大的防御反应中进行了强有力的防御反应。我们已经调查了这种辩护,并提出了三种类型的问题:(1)果蝇如何认识到入侵的微生物; (2)识别如何导致细胞内信号传导级联反应和基因重编程的激活; (3)产生哪些效应分子以反对微生物。我们的结果指出了一种复杂的防御机制,该机制基于微生物配体的几种循环,跨膜或胞质受体。结合受体触发了几个不同的信号级联,这些级联在NF-κB家族成员的激活中达到顶点,进而控制了数百种免疫反应基因的表达,其中一些基因具有有效的抗菌活性。与哺乳动物先天免疫机制的严格相似之处指向这种辩护的共同血统,并将在演讲中进行讨论。最近的评论:J.A。Hoffmann(2003)。 果蝇的免疫反应。 自然,第426、33-38卷。Hoffmann(2003)。果蝇的免疫反应。自然,第426、33-38卷。
在技术环境变化比近代历史上任何时候都更快、更分散的背景下,美国必须明确指出,如此快速、分散的技术变化为不对称优势或战略突袭提供了越来越多的机会,这可能会严重损害美国的利益。相比之下,掌握这种新技术环境将是成功的关键。国防部已经在鼓励创造由新兴技术推动的新概念:缩短采购周期以实现更高的迭代率,并在机密项目中开发特殊能力——但我们并没有将这些努力系统地作为对冲战略,我们认为这必须是美国未来愿景、作战概念和采购后勤的一部分。
“这段历史上有一些教训,关于我们作为一个国家如何搞砸整个过程的重要教训,而不仅仅是高超生力。所以DARPA有一个程序,我认为它被称为Hypersonic测试工具HTV-1和HTV-2。HTV-1,2007年。htv-2我认为是2009年。关于HTV-1的事情是第一次飞行失败。它飞了起来,但它撞到了轨迹中的某个点。您正在谈论此时的高超音速滑行车辆。因此,它正在直接进行高音。热量和振动导致飞行机构的故障,并在飞行中分解。失败。好吧,那么当您失败时,这个国家在2007年会做什么?国会表格委员会调查我们为什么失败的原因,国防部表格委员会弄清楚为什么我们失败了,我们在我们弄清楚时停了两年。然后,我们弄清楚了一个问题,哦,顺便说一句,工程师在第二天知道。好吧,但是我们花了两年时间来弄清楚这一点,然后我们回去再次测试,然后再次失败。好吗?
本信息征询书旨在收集高超音速武器系统吸气式发动机供应商基地的国内生产能力和产能信息。吸气式发动机可使武器射程更远,并将更多有效载荷投向目标。这些发动机系统包括冲压发动机、超燃冲压发动机、联合循环发动机、空气增强火箭和旋转爆震发动机。在发射这些系统之一的过程中,火箭助推器或常规发动机将飞行器加速到至少超音速,然后切换到高超音速推进能力,以高马赫数和高 g 载荷飞向目标。这种飞行状态会在系统中产生巨大的热、机械和声学应力。武器在其大部分任务过程中都会经历这些应力,而传统战略导弹只会在其弹道的最后阶段才会经历这种环境。吸气式发动机及其子系统、部件、子组件和组成材料都是专门为高超音速飞行这一独特恶劣环境设计和生产的,扩大其生产对于美国国防部高超音速导弹打击战略的成功至关重要,该战略被视为国防必不可少的一部分。助推巡航高超音速导弹在整个任务期间必须承受至少 2,000 华氏度的停滞温度,所有冷却源都必须来自燃料或辅助冷却剂,这些冷却剂在弹道过程中会被热浸透。此外,由于这些系统的速度比传统系统快 5 到 8 倍,因此发动机必须经过特殊设计,以便在高超音速下吸入空气并燃烧燃料,同时保持一致的性能;发动机的所有部件必须可靠地适应这种环境并以高精度运行,才能执行任务。这项艰巨的任务需要专门的设备、材料、工具和设计,以构建新颖的进气口和燃烧室几何形状、先进的燃油喷射系统、高性能燃料、有效的热管理系统以及耐用的发动机结构,如喷嘴喉口、出口锥和其他支撑部件。这些发动机的部件通常采用先进的增材制造、工具、热障涂层、射线检查和电子束焊接技术制造,以实现必要的性能。到目前为止,国防部已经支持了这一领域的概念验证和原型设计工作,但需要扩大工业基础能力以满足预期的未来需求。此外,目前的发动机设计是保密的,漫长的供应链(例如,