揭示了稀有地掺杂的Yttrium Iron石榴石的宽带Terahertz Faraday旋转机制Q.D.Xie,Z.C。 bin,T.Y。 Zhang,M。Hu,Q.H. Yang和P.H. Zhou 59在细菌纤维素上直接整合氧化铁纳米颗粒,以使水中的染料降解M.L.M. Budlayan,J.N。 Patricio,D.C。Palangyos,R.A。 Guerrero和S.D. ARCO 67研究HCl预处理和K 2 FEO 4-KOH催化剂对空棕榈油水果堆的石墨化过程I. Nuriskasari的石墨化过程的影响I. Nuriskasari,A.Z.。 Syahrial,T.A。 Ivandini,A。Sumboja,B。Priyono和Q.Y. yan 75苯胺四聚体装饰氟丙烯酸酯聚合物作为高性能耐腐蚀性涂层Z.H. Shen,M.Y。 an,q.q。 Hu和Q.小Xiao 81基于碳纳米材料的聚合物M.N.的抗反射材料的光学特性 Zhukava和F.F. komarov 87自然超疏水叶上的水微颗粒及其弹性复制品M.L.M. Budlayan,D.C。Palangyos,J.N。 Patricio,S.D。 Arco和R.A. Guerrero 95 NMC811的特征,使用稻壳衍生的二氧化硅涂料F. Angellinnov,A。Subhan,T.A。 Ivandini,A。Sumboja,B。Priyono,Q.Y. Yan和A.Z. Syahrial 101Xie,Z.C。bin,T.Y。Zhang,M。Hu,Q.H. Yang和P.H. Zhou 59在细菌纤维素上直接整合氧化铁纳米颗粒,以使水中的染料降解M.L.M. Budlayan,J.N。 Patricio,D.C。Palangyos,R.A。 Guerrero和S.D. ARCO 67研究HCl预处理和K 2 FEO 4-KOH催化剂对空棕榈油水果堆的石墨化过程I. Nuriskasari的石墨化过程的影响I. Nuriskasari,A.Z.。 Syahrial,T.A。 Ivandini,A。Sumboja,B。Priyono和Q.Y. yan 75苯胺四聚体装饰氟丙烯酸酯聚合物作为高性能耐腐蚀性涂层Z.H. Shen,M.Y。 an,q.q。 Hu和Q.小Xiao 81基于碳纳米材料的聚合物M.N.的抗反射材料的光学特性 Zhukava和F.F. komarov 87自然超疏水叶上的水微颗粒及其弹性复制品M.L.M. Budlayan,D.C。Palangyos,J.N。 Patricio,S.D。 Arco和R.A. Guerrero 95 NMC811的特征,使用稻壳衍生的二氧化硅涂料F. Angellinnov,A。Subhan,T.A。 Ivandini,A。Sumboja,B。Priyono,Q.Y. Yan和A.Z. Syahrial 101Zhang,M。Hu,Q.H.Yang和P.H. Zhou 59在细菌纤维素上直接整合氧化铁纳米颗粒,以使水中的染料降解M.L.M. Budlayan,J.N。 Patricio,D.C。Palangyos,R.A。 Guerrero和S.D. ARCO 67研究HCl预处理和K 2 FEO 4-KOH催化剂对空棕榈油水果堆的石墨化过程I. Nuriskasari的石墨化过程的影响I. Nuriskasari,A.Z.。 Syahrial,T.A。 Ivandini,A。Sumboja,B。Priyono和Q.Y. yan 75苯胺四聚体装饰氟丙烯酸酯聚合物作为高性能耐腐蚀性涂层Z.H. Shen,M.Y。 an,q.q。 Hu和Q.小Xiao 81基于碳纳米材料的聚合物M.N.的抗反射材料的光学特性 Zhukava和F.F. komarov 87自然超疏水叶上的水微颗粒及其弹性复制品M.L.M. Budlayan,D.C。Palangyos,J.N。 Patricio,S.D。 Arco和R.A. Guerrero 95 NMC811的特征,使用稻壳衍生的二氧化硅涂料F. Angellinnov,A。Subhan,T.A。 Ivandini,A。Sumboja,B。Priyono,Q.Y. Yan和A.Z. Syahrial 101Yang和P.H.Zhou 59在细菌纤维素上直接整合氧化铁纳米颗粒,以使水中的染料降解M.L.M.Budlayan,J.N。 Patricio,D.C。Palangyos,R.A。 Guerrero和S.D. ARCO 67研究HCl预处理和K 2 FEO 4-KOH催化剂对空棕榈油水果堆的石墨化过程I. Nuriskasari的石墨化过程的影响I. Nuriskasari,A.Z.。 Syahrial,T.A。 Ivandini,A。Sumboja,B。Priyono和Q.Y. yan 75苯胺四聚体装饰氟丙烯酸酯聚合物作为高性能耐腐蚀性涂层Z.H. Shen,M.Y。 an,q.q。 Hu和Q.小Xiao 81基于碳纳米材料的聚合物M.N.的抗反射材料的光学特性 Zhukava和F.F. komarov 87自然超疏水叶上的水微颗粒及其弹性复制品M.L.M. Budlayan,D.C。Palangyos,J.N。 Patricio,S.D。 Arco和R.A. Guerrero 95 NMC811的特征,使用稻壳衍生的二氧化硅涂料F. Angellinnov,A。Subhan,T.A。 Ivandini,A。Sumboja,B。Priyono,Q.Y. Yan和A.Z. Syahrial 101Budlayan,J.N。Patricio,D.C。Palangyos,R.A。 Guerrero和S.D.ARCO 67研究HCl预处理和K 2 FEO 4-KOH催化剂对空棕榈油水果堆的石墨化过程I. Nuriskasari的石墨化过程的影响I. Nuriskasari,A.Z.。Syahrial,T.A。Ivandini,A。Sumboja,B。Priyono和Q.Y. yan 75苯胺四聚体装饰氟丙烯酸酯聚合物作为高性能耐腐蚀性涂层Z.H. Shen,M.Y。 an,q.q。 Hu和Q.小Xiao 81基于碳纳米材料的聚合物M.N.的抗反射材料的光学特性 Zhukava和F.F. komarov 87自然超疏水叶上的水微颗粒及其弹性复制品M.L.M. Budlayan,D.C。Palangyos,J.N。 Patricio,S.D。 Arco和R.A. Guerrero 95 NMC811的特征,使用稻壳衍生的二氧化硅涂料F. Angellinnov,A。Subhan,T.A。 Ivandini,A。Sumboja,B。Priyono,Q.Y. Yan和A.Z. Syahrial 101Ivandini,A。Sumboja,B。Priyono和Q.Y.yan 75苯胺四聚体装饰氟丙烯酸酯聚合物作为高性能耐腐蚀性涂层Z.H.Shen,M.Y。 an,q.q。 Hu和Q.小Xiao 81基于碳纳米材料的聚合物M.N.的抗反射材料的光学特性 Zhukava和F.F. komarov 87自然超疏水叶上的水微颗粒及其弹性复制品M.L.M. Budlayan,D.C。Palangyos,J.N。 Patricio,S.D。 Arco和R.A. Guerrero 95 NMC811的特征,使用稻壳衍生的二氧化硅涂料F. Angellinnov,A。Subhan,T.A。 Ivandini,A。Sumboja,B。Priyono,Q.Y. Yan和A.Z. Syahrial 101Shen,M.Y。an,q.q。Hu和Q.小Xiao 81基于碳纳米材料的聚合物M.N.的抗反射材料的光学特性Zhukava和F.F. komarov 87自然超疏水叶上的水微颗粒及其弹性复制品M.L.M. Budlayan,D.C。Palangyos,J.N。 Patricio,S.D。 Arco和R.A. Guerrero 95 NMC811的特征,使用稻壳衍生的二氧化硅涂料F. Angellinnov,A。Subhan,T.A。 Ivandini,A。Sumboja,B。Priyono,Q.Y. Yan和A.Z. Syahrial 101Zhukava和F.F.komarov 87自然超疏水叶上的水微颗粒及其弹性复制品M.L.M.Budlayan,D.C。Palangyos,J.N。 Patricio,S.D。 Arco和R.A. Guerrero 95 NMC811的特征,使用稻壳衍生的二氧化硅涂料F. Angellinnov,A。Subhan,T.A。 Ivandini,A。Sumboja,B。Priyono,Q.Y. Yan和A.Z. Syahrial 101Budlayan,D.C。Palangyos,J.N。Patricio,S.D。Arco和R.A. Guerrero 95 NMC811的特征,使用稻壳衍生的二氧化硅涂料F. Angellinnov,A。Subhan,T.A。 Ivandini,A。Sumboja,B。Priyono,Q.Y. Yan和A.Z. Syahrial 101Arco和R.A. Guerrero 95 NMC811的特征,使用稻壳衍生的二氧化硅涂料F. Angellinnov,A。Subhan,T.A。Ivandini,A。Sumboja,B。Priyono,Q.Y. Yan和A.Z. Syahrial 101Ivandini,A。Sumboja,B。Priyono,Q.Y.Yan和A.Z. Syahrial 101Yan和A.Z.Syahrial 101
Asinara Palladio Bastia Papa Luciani 村 Astichello Pasqualotto Braglio Papa Wojtyla 村 Barchetto Pra' Castello Branzoloschi Pozzo Bassana Repubblica 广场 Bruso Praoti Belvedere 罗马 Buzzaccherini Preara Bentivoglio Salgaroni Ca' Rote 纪念 V.le Bollina Sante Segato Calcara S. Redentore of P .za Bonin Longare Scamozzi Capitelli San Francesco Bortolan 锯木厂Cave San Giorgio Capo di Sotto Sordina Cavedagnona 圣米歇尔村 Cerato Stecchini Colombarini San Pietro Colombara Trissino Terraglioni Contralonga San Rocco Decima 威尼斯修道院 Sanson Feliciano Del Donatore P.zetta Vittoria 修道院 Santa Caterina Don Martino Chilese V.le Zanfardin Crosare Stivanelle Europa Unita 南部工匠区从 Schio Spartiori Fabbri 工匠区 从 Denetta 村出发 Strada Romana Forni Degli Summano Alpini Fra' Nicolò Feo Togarello G.B.皮托尼村 Fontanelle Val Cappella Grumo Franzana Vegre Ford Franzani Vignole Igna Franzegolo V. V. 威尼托广场 Maganza Giovanni XXIII XXV Aprile 广场 Marconi Leva' Marianna Cita 村 Lovara Marocchino Maglio Molino Masieroni 蒙斯加尔扎罗·吉乌斯。P.za Mille 宫廷艺术 Murazzo Molle Pagani Moraro Palazzina Palugara
摘要 引言:纳米粒子 (NPs) 具有独特的物理化学性质,因而具有较高的表面积与体积比,在各种药物设计中备受关注。由于检查新设计的粒子与不同靶标之间的相互作用对于治疗各种疾病非常重要,因此检查这些粒子与不同靶标(其中许多是蛋白质)之间相互作用的技术现在非常普遍。方法:本研究使用 AutoDock 4.2.6 软件工具的分子对接技术研究了覆盖碳层的金属氧化物纳米粒子 (MONPs)(Ag 2 O 3 、CdO、CuO、Fe 2 O 3 、FeO、MgO、MnO 和 ZnO NPs)与与癌症和细菌感染靶标相关的标准药物之间的相互作用。最后,使用 PRO TOX-II 在线工具比较这些 MONPs 与标准药物的毒性(LD 50 )和分子量。结果:根据半柔性分子对接过程中获得的数据,MgO 和 Fe 2 O 3 NPs 在许多情况下的表现优于标准药物。MONPs 通常具有比标准药物更低的 50% 致死剂量 (LD 50 ) 和更高的分子量。MONPs 在三种疾病中对不同靶标的结合能差异很小,这可能归因于 MONPs 特定的物理化学和药效团性质。结论:MONPs 的毒性是基于它们的药物开发的主要挑战之一。根据这些分子对接研究的结果,在所研究的 MONPs 中,MgO 和 Fe 2 O 3 NPs 的效率最高。
世界正在向数字化未来迈进。行业和企业的数字化转型预计将反映和体现工业 4.0 技术(Aleksendri & Carlone,2015 年)。这个时代最突出的技术之一包括使用区块链、物联网和云计算进行商业模拟,使用人工智能。Dirican(2015 年)将人工智能的使用定义为机器执行人类能够做的事情的能力,例如基本通信,因此被称为智能。人工智能与自动化为商业行业提供了各种机会(Donepudi,2018 年)。在商业模拟中使用人工智能可以更好地解决问题,提高市场预测的准确性,以及更快地将更多输入集成到系统中。人工智能并不是一个较新的技术主题,也不是一个新的研究领域(Saka、Dogan 和 Aydogdu,2013;Frayret 等,2007);然而,直到最近,技术进步才确定了人工智能在多个学科和行业中的潜力(Min,2010;Efendigil、Onüt 和 Kahraman,2009),因此,人们对其在各个研究领域的适应性提出了担忧(Martínez-Lopez ´ 和 Casillas,2013;Rekha、Abdulla 和 Asharaf,2016),更不用说在商业模拟过程中了。虽然信息技术中的一些研究领域只关注公司的竞争必要性,但人工智能的使用已成为那些应用其实践的公司的一种竞争优势(Feo 和 Resende,1995)。许多公司正在从远程监控其产品在市场上的表现转向控制、优化等新领域,以及先进的人工智能系统,旨在改善其市场的功能(Redding & Turner,2015)。
为了增加阴极材料的能力,氧阴离子氧化还原反应(ARR)已在基于Li/Na的氧化氧化物中引入,以提供超出常规阳离子氧化还原反应(CRR)的电荷补偿空间。[13–15]然而,高压下晶格O 2-离子的激活通常会导致不可逆的氧气释放,从而加速了结构性重建,并导致了能力和伏特的迅速衰减。[16–18]因此,氧气的电化学实现可逆ARR的利益对于实现高能阴极材料至关重要,这仍然具有挑战性,并且可以重现创新的结构设计。与锂离子系统相比,尤其是与富含Li的配置,似乎在氧气行为上是高度不可逆的,[19]各种Na-ion Sys-tems显示出可逆的ARR,但仅在最初的几个周期中。[11,13,14,16,19-35]这些作品表明了基于ARR的Na-ion电极的有希望的功能,这激发了我们探索优化策略,这些策略可以通过维持ARR的高压操作,同时通过维持其结构稳定性,使其能够实现Na-ion pathode材料的高压操作,同时又可以实现其结构稳定性。mn和fe是地壳中的两个高度丰富的元素,因此高度可取,用于设计笔尖的阴极材料。[41][36]然而,由于1)由于1)无法控制的氧气离子的不可控制的反应途径而在高电压下以Fe/Mn的基于Fe/Mn的阴极材料的速度快速降解和严重的结构转化,2)与Jahn-Teller exterct of Mn 3 + feo 6 + 3 +相关的有害结构性降解途径。 Fe 3 +的NeOS迁移/陷阱迁移到碱金属层中,特别是在高压下循环(> 4.0 V VS Na/Na +),[35,37-40]和4)带有TM层幻灯片的复杂相变。
眼科中的DeepSeek-R1的标题表现:对临床决策和成本效益的评估作者David Mikhail MD(C)MSC(C)MSC(C)1,Andrew Farah MDCM(C)2,Jason Milad Bse(Jason Milad Bse(C)4票价ANTAKI MDCM FRCSC 3,5,6,7,8,Michael Balas MD 9,Marko M. Popovic MD MD MPH FRCSC 9,10,Alessandro Feo MD 10,11,Rajeev H. Muni Muni MD MD MSC FRCSC 9,12 Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada 2 Faculty of Medicine, McGill University, Montreal, Quebec, Canada 3 Department of Ophthalmology, Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, Quebec, Canada 4 Department of Software Engineering, University of Waterloo, Waterloo, Ontario, Canada 5 Department of Ophthalmology, University of蒙特利尔,蒙特利尔,加拿大魁北克省6个中心大学d'Ophtalmologie(CUO),HôpitalMaisonneuve-Rosemont,Ciusss de l'Est-de-de-de-de-de-de-de-l'île-de-montréal,蒙特利尔,加拿大魁北克 (CHUM), Montreal, Quebec, Canada 8 Cole Eye Institute, Cleveland Clinic, Cleveland, OH 44195, USA 9 Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, Ontario Canada 10 Retina Division, Stein and Doheny Eye Institutes, Department of Ophthalmology, University of California, Los Angeles, California, United States of America 11 Department of人类大学生物医学科学,通过Rita Levi Montalcini 4,20072。眼科中的DeepSeek-R1的标题表现:对临床决策和成本效益的评估作者David Mikhail MD(C)MSC(C)MSC(C)1,Andrew Farah MDCM(C)2,Jason Milad Bse(Jason Milad Bse(C)4票价ANTAKI MDCM FRCSC 3,5,6,7,8,Michael Balas MD 9,Marko M. Popovic MD MD MPH FRCSC 9,10,Alessandro Feo MD 10,11,Rajeev H. Muni Muni MD MD MSC FRCSC 9,12 Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada 2 Faculty of Medicine, McGill University, Montreal, Quebec, Canada 3 Department of Ophthalmology, Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, Quebec, Canada 4 Department of Software Engineering, University of Waterloo, Waterloo, Ontario, Canada 5 Department of Ophthalmology, University of蒙特利尔,蒙特利尔,加拿大魁北克省6个中心大学d'Ophtalmologie(CUO),HôpitalMaisonneuve-Rosemont,Ciusss de l'Est-de-de-de-de-de-de-de-l'île-de-montréal,蒙特利尔,加拿大魁北克 (CHUM), Montreal, Quebec, Canada 8 Cole Eye Institute, Cleveland Clinic, Cleveland, OH 44195, USA 9 Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, Ontario Canada 10 Retina Division, Stein and Doheny Eye Institutes, Department of Ophthalmology, University of California, Los Angeles, California, United States of America 11 Department of人类大学生物医学科学,通过Rita Levi Montalcini 4,20072。Pieve Pieve Emanuele-Milan,意大利12号科学系,圣迈克尔医院/统一健康多伦多,多伦多,多伦多,安大略省,加拿大,加拿大,加拿大,加拿大安大略省13伦敦大学学院,伦敦大学,UK 14 NIHR BIOMEDICAL BIOMEDICAL研究中心NHS Eye Hospital HospitA HospitA HospitA HospitA nhs NHS Hospital Hospital Tossict,NHS NHS EYS TOUNTION,UK DUERING DUVELINGIM of FIRC,MODINIM,蒙特利尔2900ÉdouardMontpetitBoulevard,蒙特利尔,加拿大魁北克,H3T 1J4电话:(514)252-3400Pieve Pieve Emanuele-Milan,意大利12号科学系,圣迈克尔医院/统一健康多伦多,多伦多,多伦多,安大略省,加拿大,加拿大,加拿大,加拿大安大略省13伦敦大学学院,伦敦大学,UK 14 NIHR BIOMEDICAL BIOMEDICAL研究中心NHS Eye Hospital HospitA HospitA HospitA HospitA nhs NHS Hospital Hospital Tossict,NHS NHS EYS TOUNTION,UK DUERING DUVELINGIM of FIRC,MODINIM,蒙特利尔2900ÉdouardMontpetitBoulevard,蒙特利尔,加拿大魁北克,H3T 1J4电话:(514)252-3400
频率选择表面 (FSS) 由周期性排列的一维或二维金属结构组成,由于其频率谐振特性而备受关注。FSS 可以根据其尺寸、形状、厚度和其他参数在特定频率范围内选择性地反射 (带阻) 或透射 (带通) 入射电磁波,这是 FSS 的识别特征。[1] 金属和介电材料结构被广泛用于设计太赫兹 FSS 或滤波器,因为它们具有高机械强度,有助于产生功能化设计。金属 FSS 可以通过反射或吸收电磁干扰来屏蔽,但是,制造所需结构的成本很高,并且正在被碳基材料取代,以获得高频电磁特性,具有合适的成本、重量轻、无腐蚀等特点。[2] 通常,碳基材料以 sp、sp 2 和 sp 3 键合,形成相互连接的碳-碳键的长链,从而产生不同的物理和电性能。 [3] 因此,这类材料可归类为半金属或非电介质材料(如石墨烯、石墨、碳纳米管、碳纳米纤维)[4,5],因此通过在磁场和电场中应用飞秒激光脉冲产生 THz 脉冲,其纳米复合材料可表现出 THz 光跃迁、光电特性和介电特性。[6–11] 由于存在非局域 π 键电子,这些碳基材料表现出优异的 EMI 屏蔽性能。自由移动的电子与电磁波相互作用,导致反射,在共振频率下具有最大回波损耗值。[12] 过多的电磁能量会损坏周围的电路并引起不必要的噪声脉冲。Liang 等人。报道了竹状短碳纤维@Fe3O4@酚醛树脂和蜂窝状短碳纤维@Fe3O4@FeO复合材料作为高性能电磁波吸收材料,在4-18 GHz范围内成功实现了反射损耗-10 dB。[13]然而,在文献中对碳基材料在THz范围内的表征仍然没有很好的解释,关于碳基材料FSS特性的报道很少。最近,一种利用3D打印制造的碳基FSS吸收器
您父亲雷莫·德菲奥 (Remo De Feo) 拥有数年的创业经验,并曾担任爱立信控股的公司 SIELTE 的经理,之后于 1958 年 11 月创立了 IPM。您是如何经历创业阶段的?它给家族历史和意大利南部的创业全景留下了什么印记?我要从我父亲去世的那天开始,也就是 1963 年 10 月 19 日。这是我生命中值得纪念的一天。我当时是一名大学生,正在修读两年的工程课程,为卡雷利教授的物理学 II 考试做准备。我们住在那不勒斯的历史中心。当时正是下午,父亲正在休息。由于身体不舒服,他没有去上班。我在隔壁房间。他打电话给我,说他胸口痛得厉害。他当时就已经有心脏问题了。我尝试给他注射,我和我的兄弟卡洛打电话给家庭医生,但一切都是徒劳的:十分钟后,他突然心脏病发作夺走了他的生命。当时我 21 岁,卡洛 19 岁,最小的儿子马可 16 岁。我母亲去教堂,我姐姐阿黛尔带着两个孩子住在附近。跟我讲讲你的父亲吧。他是一位企业家的创造者。他于 1904 年 2 月 22 日出生在米拉贝拉埃克拉诺,并在那里生活到中学毕业,后来他搬到了那不勒斯,就读于亚历山德罗沃尔塔(Alessandro Volta),这是一所高级技术学院。在取得工业专家文凭后,他被SIELTE聘用,这是一家专门从事电信系统和网络安装的公司,总部位于罗马,由斯德哥尔摩爱立信控股。这家瑞典跨国公司由卡尔·马格努斯·爱立信于 1876 年创立,如今已成为电信领域的领先公司,营业额达 200 亿欧元。该公司最初是一家电话维修公司,1879 年底通过与瑞典领先的电信公司达成协议开始其生产活动,以保持足够的质量标准。 1883年,该公司与美国贝尔集团联手,将其制造业务转移至瑞典,直至1918年,两家公司合并,同年新公司开始在意大利运营。 2018 年,该公司在意大利拥有 3,000 名员工。爱立信和诺基亚是唯一的欧洲制造公司
铋铁氧体 (BiFeO 3 ) 纳米颗粒 K. SARDAR a 、K. ALI a,* 、S. ALTAF a 、M. SAJJAD a 、B. SALEEM a 、L. AKBAR a 、A. SATTAR b 、Z. ALI a 、S. AHMED a 、U. ELAHI a 、EU HAQ a 、A. YOUNUS aa 纳米光电子研究实验室,费萨拉巴德农业大学物理系,38040 费萨拉巴德,巴基斯坦 b 机械、机电一体化和制造工程系(新校区 KSK),工程技术大学,拉合尔,巴基斯坦 通过溶胶凝胶法合成多铁性铋铁氧化物 (BiFeO 3 ) 纳米颗粒。本研究展示了在 550 ᵒ C 下制备铋铁氧体纳米粒子的方法。在该方法中,硝酸铋 [Bi (NO 3 ) 3 .5H 2 O] 和硝酸铁 [Fe (NO 3 ) 3 .9H 2 O] 被用作起始化学剂。为了克服铋在高温下的挥发性,使用了不同重量百分比的化学品。柠檬酸被用作螯合剂。在 550 ᵒ C 下对样品进行热处理。铋铁氧体纳米粒子表现出明显的铁磁性。随着磁化强度的增加,铋铁氧体纳米粒子的尺寸减小。随着 550 ᵒ C 下化学品浓度的增加,由于重结晶,粒径减小。溶胶凝胶法有助于控制晶体的尺寸。利用 X 射线衍射 (XRD)、扫描电子显微镜 (SEM) 和紫外-可见光对制备的铋铁氧体纳米粒子样品进行表征,以获取有关表面形貌和晶体结构的信息。X 射线衍射结果提供了有关粒度和相位识别的信息。紫外-可见光提供了有关 BiFeO 3 纳米粒子带隙能量的信息。扫描电子显微镜结果提供了不同分辨率下纳米粒子的表面形貌和晶粒尺寸的信息。 (2019 年 9 月 23 日收到;2020 年 1 月 22 日接受) 关键词:纳米粒子、溶胶凝胶、氧化铋铁、带隙 1. 简介 在所有多铁性材料中,铋铁氧体 (BiFeO 3) 是一种在钙钛矿结构中显示反铁磁和铁电序参数共存的材料。它以块体形式早已为人所知。 BiFeO 3 在尼尔温度 (TN =643 ᵒ K) 下表现出反铁磁现象,在居里温度 (T c =1103 ᵒ K) 下表现出铁电现象。研究表明,尽管名称如此,BiFeO 3 并非铁氧体结构,而是钙钛矿结构。在块体中,BiFeO 3 被描述为具有空间群 R 3 C 和菱面体扭曲的铁电钙钛矿。晶格参数为 C hax = 13.87Ȧ、ar = 5.63Ȧ、a hax = 5.58Ȧ 和 α r = 59.350。室温下的最大极化为 90µ/cm 2 至 100µ/cm 2。目前对铋铁氧体的研究表明,如果粒子尺寸大于磁性,则磁性会消失,晶体尺寸越小磁性越强。在纳米粒子中,磁性导致螺旋序被抑制(Manzoor 等人,2015 年)。来自天体化学活动的 Bi 3+ 电子离子对起源于铁电序(T c ∼ 830 ᵒ C)。在此类材料中,d 需要不同的填充状态来转换金属离子在铁电和磁性中的状态(Johari,2011 年)。室温下的铋铁氧体是铁电性的,因为沿着钙钛矿结构的一个方向自发电极化是定向的。铁电态导致铋离子相对于 FeO 6 八面体的较大位移,这导致了一些重要的后果。沿 <111> 方向存在 BFO 铁电极化。它导致八种可能的极化方向。通过使用电场,可以通过切换的可能性来控制磁态