肠道健康:实验室可以产生维生素,短链脂肪酸和细菌素。可能会阻止有害细菌的生长;并有助于平衡有益的肠道细菌。提高了消化率和营养吸收:实验室可以改善消化和营养吸收,尤其是蛋白质的营养吸收。过敏降低:实验室可以通过分解引起过敏反应的特定蛋白质来降低某些食物(例如乳制品或小麦)的过敏性特性。抗氧化特性:一些实验室菌株产生抗氧化剂化合物,有助于与有害的自由基作斗争。压力缓解:某些实验室菌株会产生一种称为GABA的化合物,该化合物充当神经递质,可以降低血压,放松肌肉并减少心理压力。
INSA Toulouse ( https://www.insa-toulouse.fr/ ) Partnership: CRITT BIO-INDUSTRIES ( https://bioindustries.insa-toulouse.fr/ ), BBF ( https://www.bbf-lab.fr/ ) Period: Starting period between April/May 2025 (duration: 18 months) Funding: Carnot 3BCAR,固体影响项目总工资:2250€/月(INRAE合同)上下文:固态发酵(SSF)是一种生物技术过程,特别适合在植物生物量上培养丝状真菌。这项技术为感兴趣的分子的可持续生产提供了许多优势,包括适用于现有价值链,低水需求和低废物生产的各种副产品。SSF对于食品,绿色化学和化妆品等不同市场具有工业兴趣。SSF流程相对简单地在实验室范围内设置。然而,扩大规模的困难,特别是与内源性菌群的存在,可用生物质的异质性以及在培养过程中对真菌行为的监测有关。稳固的影响项目旨在了解两个关键参数对SSF性能的影响:内源性微生物对生物质的污染水平,以及真菌对底物异质性的适应性和菌丝菌丝周围的环境。为了解决这些局限性,我们将衡量不同净化方法对菌合的建立的影响,并监测异质性在微环境参数中的影响,例如温度,水含量,pH和底物颗粒测定法对真菌生长及其代谢活性。我们将使用丝状真菌brumalis,这是可以在SSF中种植的高木质和纤维素分解酶的高生产商,并且是生物经济性的模型生物量,其培养不会影响食品农业的土地使用:Miscarcanthus。
在生物技术中,批处理培养物涉及在开始时将所有培养基组件放在反应堆中,除了大气气体和其他控制剂。这会随着时间的推移而创建一个不稳定的系统,而营养浓度不断变化。饲料批量文化通过无菌添加营养来修改这种修改,从而创建一个半开放的系统,其中液体培养体积随系统添加而增加。这种方法提高了生产率,产生更好的结果并允许更高的细胞密度。连续培养是一个连续的过程,在该过程中,添加营养并同时去除培养汤,由于平衡的进料和进料速率而保持恒定体积。比较这些方法揭示了关键差异:批处理文化使用封闭的系统,一开始就提供了所有营养,而Fed Batch则使用具有系统添加的半关闭系统。连续培养在开放系统中运行,并具有连续的营养添加和去除。过程的持续时间也有所不同,当产品形成时,批处理和批量停止,而连续文化通过不断删除产品来保持生产。微生物在每种方法中都经历不同的阶段:批处理和饲料批次经历滞后,原木,固定和死亡阶段,而连续培养物将微生物保持在滞后和对数阶段。这些方法之间的内部环境和养分量也有所不同,批处理具有不稳定的环境和恒定的营养量,饲料批量保持恒定的环境,养分量增加,并且连续培养保持环境和营养量稳定。4。•发酵过程在开始时将环境从外部转变为内部。•营养水平和条件会影响微生物的周转率,这在两者都保持良好时是最佳的。•控制微生物生长和所需产品在发酵过程中有所不同。•批处理培养物利用大型发酵罐,而饲料群则使用小型发酵罐,并且连续培养物使用小型发酵罐。•建立批处理文化很简单,而建立饲料批次或连续文化则需要更多的复杂性和精力。•产品的产量在发酵类型上有所不同,在某些过程中看到了高收率。•劳动需求根据发酵的类型而有所不同,其中一些人需要比其他人少的劳动力。•投资要求也有所不同,某些流程需要比其他流程更高的投资。•控制方法可以简单,快速或复杂,并且取决于所使用的发酵技术。•发酵主要用于生产二级产品,例如抗生素和重组蛋白。•最终产品是通过下游处理步骤获得的。综合生物技术(2017)Yang&Sha,“生物处理模式的初学者指南,美联储批次和连续发酵” doi:10.1016/b978-08-08-0888504-9.00112-4。本文概述了Fed Batch反应堆培养物,这是一种生物技术过程,在培养过程中,将一种或多种营养素喂给生物反应器,从而可以控制底物浓度。这种现象称为分解代谢物抑制。在控制营养水平会影响产品产量或生产力的情况下,该技术很有用。饲喂群培养特别有效。这些酸的形成称为细菌crabtree效应。分解代谢物抑制在微生物中提供了易于代谢能源(如葡萄糖)时,ATP浓度的增加会导致抑制酶的生物合成,从而导致能源源代谢较慢。许多参与分解代谢途径的酶都受到这种调节的约束。一种克服分解代谢物抑制的方法是饲喂群培养物,在该培养物中,葡萄糖浓度保持较低并受到生长的限制,从而使酶生物合成消除。青霉子素的青霉素发酵就是一个例子。5。使用需要特定养分的可营养性突变体在微生物过程中的,多余的养分供应会促进细胞的生长,但由于反馈抑制和终产产物抑制而抑制了代谢物的积累。 所需养分的饥饿减缓了细胞的生长和产生。 通过在有限的养分量上种植突变体,可以最大化所需的代谢物积累。 该技术用于工业氨基酸的生产,例如赖氨酸生产羟基氨基或苏氨酸/蛋氨酸/蛋氨酸的谷胱甘肽谷氨酰胺突变体。 6。 指定的化合物在培养液体中的存在形成共抑制剂,当其浓度保持较低时,允许持续的基因表达。 7。,多余的养分供应会促进细胞的生长,但由于反馈抑制和终产产物抑制而抑制了代谢物的积累。所需养分的饥饿减缓了细胞的生长和产生。 通过在有限的养分量上种植突变体,可以最大化所需的代谢物积累。 该技术用于工业氨基酸的生产,例如赖氨酸生产羟基氨基或苏氨酸/蛋氨酸/蛋氨酸的谷胱甘肽谷氨酰胺突变体。 6。 指定的化合物在培养液体中的存在形成共抑制剂,当其浓度保持较低时,允许持续的基因表达。 7。所需养分的饥饿减缓了细胞的生长和产生。通过在有限的养分量上种植突变体,可以最大化所需的代谢物积累。该技术用于工业氨基酸的生产,例如赖氨酸生产羟基氨基或苏氨酸/蛋氨酸/蛋氨酸的谷胱甘肽谷氨酰胺突变体。6。指定的化合物在培养液体中的存在形成共抑制剂,当其浓度保持较低时,允许持续的基因表达。7。用抑制启动子对基因的表达控制抑制启动子的基因的转录被DNA上的全抑制剂和操作员区域的组合抑制。美联储文化允许这样做。示例包括TRP启动子和Phoa启动子。延长运营时间,补充水分流失和降低培养汤粘度粘度的饲料批次策略用于工业生物过程中,以达到高细胞密度。通常,饲料溶液高度浓缩以避免生物反应器稀释。蛋白质已广泛研究其生长模式和局限性。该方法涉及以精确的速度将营养直接添加到培养物中,这有助于防止形成不良的副产品和氧气稀缺。该技术对于维持微生物繁殖的稳定环境至关重要。一种类型的Fed批次培养物,称为不断喂养的批量培养(CFBC),涉及在整个过程中以恒定的速率喂养限制生长的底物。该方法在数学上和实验上都得到了良好的建立,并且可以适用于固定容量或可变体积系统。在理想的情况下,细胞成倍地生长,通过按照这种生长成比例调整进料速率,可以维持细胞的特定生长速度,同时保持底物浓度恒定。这种方法允许对反应速率进行更多控制,并防止技术局限性,例如反应堆或氧转移困难中的冷却问题。指数填充的批量培养(EFBC)是另一种变化,涉及随着时间的时间呈指数增长的饲料率,以匹配细胞的指数生长速率。此外,它提供了代谢控制,以防止渗透作用,分解代谢产物抑制和形成不良的副产品。可以采用不同的策略来控制喂养过程中的生长,包括控制参数,例如氧气水平,葡萄糖浓度,pH,氨水水平和温度。这些方法对于维持微生物产生所需蛋白质的最佳条件至关重要,同时最大程度地减少了不需要的副产品的产生。大肠杆菌高细胞密度的生物层化方法
深色发酵(DF)是一种生物学过程,能够从有机废物中产生氢气,这可以作为生物精炼厂中的基础发挥关键作用。,但仍需要优化DF的流体动力条件以增强气体液传质,从而减少了可溶性氢的自抑制作用。质量转移增强受到限制,因为对微生物的液压应力必须受到限制,并且该过程的经济可持续性必须保持。最近的结果表明,在层流和湍流方案之间的过渡区域中,DF增强了。为了更好地了解该制度中的3D流体动力特征,开发了一种改进的光学轨迹技术并将其应用于配备双型物件设备的2-L生物反应器。所提出的方法旨在同时使用三个摄像机来监测多达十个颗粒作为示踪剂的轨迹,但也能够在每个相机的2D图像中提供颗粒的实时位置,以最大程度地减少治疗后时间。应用了该方法,包括立体摄像机校准,实时和后处理以重建3D轨迹,并针对2D-PIV和CFD数据进行了验证。达成了良好的一致性,但是由于粒径,很难捕获附近壁和叶轮的区域。结果表明,与单个粒子作为示踪剂相比,使用五个颗粒的工作能够减少3-4的测量时间,而较高数量的示踪剂增加了伪像的镜头。
饲喂试验后对斑节对虾幼虾进行的氨基酸分析表明,饲喂 50% FRB 替代 SBM 的虾的赖氨酸水平明显高于对照组。赖氨酸和各种其他氨基酸对虾的味道至关重要。这些氨基酸的增加将进一步增强理想的味道,而下降则会导致虾的感官特性发生变化。此外,饲喂 50% FRB 的斑节对虾的谷氨酸(https://doi.org/10.1081/FRI-100000515)——一种负责海鲜产品鲜味的物质——高于对照组。这些结果表明,FRB 可以改善斑节对虾的感官特性,对虾味道至关重要的氨基酸数量增加就是明证。
酿酒是古老的技术之一,只是通过复杂的生化反应将糖转化为酒精的过程。酿酒的过程涉及一系列的融合技术,该技术在酿酒厂面临许多挑战,包括由于化学和微生物学不稳定性而导致的质量不一致,有限的感官伏特(Avor avor),并且担心微观环境条件的变化。发酵是一种代谢过程,其中有机底物的化学组成在厌氧条件下通过细胞酶破碎。混合发酵涉及使用多种菌株,可以增强发酵食品的香气,克服单菌株发酵的局限性,并改善食物的植物和食物质量。混合发酵在农业食品行业,医疗保健产品和医学科学方面具有重要应用。现代的混合发酵过程显示了葡萄酒香气,豆avor和味道的增强,可通过多种微生物的协同效应来降低挥发性酸度并上调乙酸苯基乙酸苯基乙酸苯基苯基浓度。在酒精发酵中的关键微生物(例如酵母,乳酸和乙酸细菌)在酒精发酵过程中相互相互作用会影响葡萄酒的质量和鸟。极性微生物已经建立了不同的分子策略,可以在不利条件下生存。被称为极端同酶,具有盐含量,热稳定性和冷适应能力的特性。但是,酒精的理化和感觉特性对于最终用品的质量很重要。因此,当优化发酵条件时,选择微生物的正确组合是获得更好的物理化学和感觉特性的关键。的使用使用混合发酵和极端化合物可以提供显着的见解和潜在的补救解决方案来克服这些技术问题并以更可取和可持续的方式来塑造最终产品,从而挑战当前的缺点,以使更具弹性的最终产品具有一致,富有效果的产品,并且可以使许多可能的产品能够受到任何可能的影响。
摘要:青贮是保存高水分牧草的有效技术之一。然而,豆科植物青贮的成功很大程度上取决于附生微生物菌群、缓冲能力和青贮牧草的水溶性碳水化合物含量。在本研究中,三种选定的乳酸菌 (LAB) 菌株被用作饲料豌豆 (Pisum sativum L.) 的微生物添加剂(10 6 CFU/g 鲜物质)。这些菌株包括双酶乳杆菌 (LS-65-2-2) 和植物乳杆菌 (LS-72-2),均从土耳其的牧场分离出来,还有枯草芽孢杆菌,它已经用于这些目的。目的是评估这些菌株对微生物组成和所得青贮饲料质量的影响。在 5 个时间点(第 0、2、5、7 和 45 天)进行青贮饲料开饲,重复 3 次。接种乳酸菌的效果在统计学上存在差异(P < 0.001)。研究结果显示,测试参数的值如下:pH(4.52–4.86)、乳酸菌(5.51–8.46 log 10 CFU/g 青贮饲料)、肠道细菌(2.24–3.61 log 10 CFU/g 青贮饲料)、酵母菌(6.20–7.03 log 10 CFU/g 青贮饲料)、中性洗涤纤维(38.85–41.93%)、酸性洗涤纤维(ADF,32.91–35.75%)和相对饲料价值(RFV,135.90–151.73)。与对照组相比,接种乳酸菌导致饲料豌豆青贮饲料的 pH 值显著下降,干物质 (DM) 回收率增加(P < 0.001)。青贮饲料中乳酸菌的丰度显著增加(P < 0.001),而接种青贮饲料中肠道细菌含量(P < 0.001)、pH、NH 3 -N(P < 0.01)和ADF(P < 0.05)降低。接种乳酸菌后,RFV 显著提高。总体而言,与枯草芽孢杆菌相比,添加乳酸菌可以改善发酵过程和青贮饲料质量,同时提高干物质回收率并降低青贮饲料 pH 值。
Teresa Esposito,Maria,Calle,Yolanda,Behrends,Volker Orcid:https://orcid.org/0000-0000-0000-0000-4855-5497和Costabile和Costabile,Adele(2022222)Cerrado和Cerrado和Pantanal Fruts Fruns conty Microboiota conterotion intery intery in pretot in pretot in pretot in pretot in pretot in pretot in pretot in pots-cov9。国际食品科学技术杂志,59(5)。ISSN 0950-5423
1. 学生将能够解释渗透的工作原理。 2. 学生将能够解释厌氧发酵如何保存食物。 3. 学生将能够进行对照实验并分析其结果。 (可选)与下一代科学标准 (NGSS) 的关联: 科学与工程实践: - 提出问题和定义问题 - 规划和开展调查 - 分析和解释数据 - 获取、评估和传达信息 学科核心思想: HS-LS1.B:生物的生长和发育 跨学科概念:因果关系 注意: - 根据您的特定房间设置,您可能希望自己准备泡菜的各个部分,或者使用烹饪教室(如果有)。 - 所有参考的食谱、工作表、视频和照片均在附录中提供。
SO 2 浓度乳酸菌(包括酒类酒球菌)对分子形式的 SO 2 高度敏感。因此,为避免分子 SO 2 对苹果酸乳酸菌产生潜在的致命影响,建议用于诱导 MLF 的葡萄汁/葡萄酒中不要含有任何可检测到的游离 SO 2(注意,传统的红酒 SO 2 测量方法,如曝气氧化法,往往会高估游离和分子 SO 2 浓度(Coelho 等人,2015 年,Howe 等人,2018 年))。此外,由于结合 SO 2 也可能对苹果酸乳酸菌和 MLF 有抑制作用,因此总 SO 2 浓度可作为衡量 SO 2 对特定葡萄酒 MLF 潜在影响的有用指标。作为指导,在压碎葡萄之前向葡萄中添加最多 50 mg/L 的总 SO 2 可限制对 MLF 的潜在不利影响。然而,由于其他外在(如葡萄的采摘和运输)和内在(如用于酒精发酵的酵母菌株)来源可能会积累 SO 2,因此建议在接种细菌之前准确测量总 SO 2 。总而言之,有利的 MLF 的理想总 SO 2 浓度小于 30 mg/L。根据所用的苹果酸乳酸菌菌株和其他葡萄酒参数,总 SO 2 浓度超过 40 mg/L 是不利的,可能会延迟 MLF 的开始和完成。浓度 >50-60 mg/L 可能会完全抑制 MLF。其他抑制因素除了上面提到的参数外,农药残留、高残留铜浓度和来自酵母的高含量某些中链脂肪酸也会抑制 MLF。