SO 2 浓度乳酸菌(包括酒类酒球菌)对分子形式的 SO 2 高度敏感。因此,为避免分子 SO 2 对苹果酸乳酸菌产生潜在的致命影响,建议用于诱导 MLF 的葡萄汁/葡萄酒中不要含有任何可检测到的游离 SO 2(注意,传统的红酒 SO 2 测量方法,如曝气氧化法,往往会高估游离和分子 SO 2 浓度(Coelho 等人,2015 年,Howe 等人,2018 年))。此外,由于结合 SO 2 也可能对苹果酸乳酸菌和 MLF 有抑制作用,因此总 SO 2 浓度可作为衡量 SO 2 对特定葡萄酒 MLF 潜在影响的有用指标。作为指导,在压碎葡萄之前向葡萄中添加最多 50 mg/L 的总 SO 2 可限制对 MLF 的潜在不利影响。然而,由于其他外在(如葡萄的采摘和运输)和内在(如用于酒精发酵的酵母菌株)来源可能会积累 SO 2,因此建议在接种细菌之前准确测量总 SO 2 。总而言之,有利的 MLF 的理想总 SO 2 浓度小于 30 mg/L。根据所用的苹果酸乳酸菌菌株和其他葡萄酒参数,总 SO 2 浓度超过 40 mg/L 是不利的,可能会延迟 MLF 的开始和完成。浓度 >50-60 mg/L 可能会完全抑制 MLF。其他抑制因素除了上面提到的参数外,农药残留、高残留铜浓度和来自酵母的高含量某些中链脂肪酸也会抑制 MLF。
生物技术利用包括微生物在内的生物系统生产出改善人类生存的产品。食品发酵是生物技术中众所周知的技术,它通过营造有益微生物战胜危险疾病的环境来帮助保存食物。发酵食品极其重要,因为它们提供并保存了大量营养丰富的食物,这些食物具有各种风味、气味和质地,丰富了人类的饮食。自从人类来到地球以来,这一过程就一直在使用和存在。在烹饪界,发酵以各种方式用于生产各种各样的食物和饮料。细菌发酵赋予酸奶和奶酪等乳制品质地和风味,而酵母则利用碳水化合物制作面包和酒精饮料。值得注意的是,发酵通过提高营养物质的生物利用度、合成维生素和产生生物活性化学物质,有助于发酵食品的健康益处。发酵通过营造有益微生物可以战胜危险疾病的环境来帮助保存食物。它还可以减轻某些食物的过敏性并抵消抗营养影响。发酵过程中微生物群落的动态相互作用使世界各地的烹饪传统变得多样而独特。本章讨论了微生物如何与食物相互作用以延长其保质期、确保其微生物安全性,甚至可能改善某些食物的消化率的技术。关键词:发酵;生物技术;生物活性;微生物;营养素
发酵是一个非凡的自然过程,几个世纪以来,人类已经利用了多种美味和营养的食物和饮料。这种迷人的转化的核心是微生物和酶,这使发酵成为可能。在本文中,我们将在发酵产品中深入研究微生物和酶的世界,探索其作用背后的角色,意义和迷人的科学。
海洋科学技术领域的密谋人和杰出人士。该中心由科学技术部长授权为《海洋科学与技术中心法》中定义的独家研究所。相应地,该中心由行业和政府融资。日本海洋科学技术中心(JAM-STEC)将主要关注先进技术的发展,这将在海洋发展的各个方面共同需要,在政府,行业和大学的共同使用以及高级海洋科学和技术中科学家的教育和培训的大型研究设施安装。该中心将配备良好,到1975年将拥有200多名员工。
发酵食品是一门艺术,在全球范围内提供各种发酵食品。每个国家或地区都有其自身类型的发酵食品,该食品基于当地人口的主食和原材料的可用性。如今,发酵食品已成为国家文化传统的一部分。例如是在印度准备和消费的,被认为是印度神话的一部分。发酵食品是由牛奶,蔬菜,水果,谷物,豆类,肉类和鱼类等各种原材料制备的。发酵食品制备的生产过程从早期文明演变到现在,也将继续。根据随着时间的推移获得的可用科学证据和专业知识,他们的流程被标准化用于商业生产。这些是通过微生物活性从不同来源的原材料生物转化产生的。与原材料相比,所得产品在质地,风味,稳定性和营养价值上有所不同。大多数发酵过程都是通过乳酸发酵进行的,其中天然菌群利用糖和淀粉的原材料以及产生有价值的酶,维生素(B-Vitamins),omega-3脂肪酸等。乳酸是产品中的天然防腐剂,因此除了有益作用外,还延长了保质期。在这里,非常重要的是要注意,发酵食品的质量取决于以下因素(图3.1):
摘要Popo是一种传统的泡沫饮料,由发酵米,烤可可豆,肉桂和绿色chupipe水果制成。尽管在墨西哥东南部的广泛消费量,但尚无研究提供有关其面团发酵的信息,将其所有成分结合在一起,以将其归类为发酵产品。因此,这项研究的目的是评估发酵时间对POPO物理化学和微生物学特征的影响。在实验室水平(T1)制备的Popo面团的发酵过程在25±2°C进行120小时进行。该研究显示,初始酵母计数为4.35±0.01 log cfu/g,随着时间的推移显着下降。相比之下,BAL在发酵的前48小时内显示出增加,达到9.54±0.04 log cfu/g。发酵抑制了大肠菌微生物的生长,最初存在于2.10±0.05 log cfu/g,从而使波波面团成为安全食用的安全选择。在结束发酵过程后,观察到显着变化,包括pH下降到3.9±0.02,可滴定酸度增加到1.23±0.03%,水分含量为39.67±0.08%。因此,建议将Popo面团的发酵周期至少48小时,以提高其微生物学质量。关键词:乳酸细菌,发酵饮料,微生物群落,popo恢复Ela popo es una bebida espumosa eSpumosa tockumosa tradicional Elaborada con Arroz fermentado,Granos de cacao de cacao tostados,canela y frutososverdes de chupipe。对比,las bal mostraron un aumento en las primeras 48 h defermentación,alcanzando un valor de 9.54±0.04 log ufc/g。尽管它在墨西哥东南部被广泛消费,但没有研究提供有关其质量发酵的信息,将其所有组件整合在一起以将其识别为发酵产品。 div>因此,这项工作的目的是评估发酵时间对POPO物理化学和微生物特征的影响。 div>在25±2°C下进行120小时,在实验室水平(T1)阐述的POPO质量的发酵过程进行了120小时。该研究显示,初始酵母计数为4.35±0.01 log UFC/g,随着时间的推移显着下降。 div>发酵抑制了大肠菌微生物的生长,最初以2.10±0.05 log ufc/g存在,这使波波的质量成为消费的安全选择。 div>在发酵过程的结论结束时,观察到显着变化,包括pH降至3.9±0.02,标题酸度的增加为1.23±0.03%,水分含量为39.67±0.08%。 div>因此,建议将Popo的质量提交至少48小时的发酵,以提高其微生物学质量。 div>关键词:乳酸细菌,发酵饮料,微生物社区,便便
关键词:啤酒,酿造,乙醇,啤酒,麦芽,酿酒酵母,糖果菌Carlsbergenesis介绍啤酒被认为是世界上最受欢迎的饮料之一。它可以定义为自文明黎明以来的重要人类活动之一。啤酒主要是在借助酵母的帮助下用谷物和水制备的(Campbell,2017年)。这种发酵过程始于数千年前的尼罗河谷(Meussdoerffer,2009年)。已经记录在埃及人是第一个记录公元前5000年酿造过程的人(Aroh,2019年)。Raihofer等人最近提供了10,000年酿造啤酒的整体历史。(2022)以及该领域最重要的发现和发展。由于这种巨大的增长和进步,该行业目前是许多欧洲国家的经济骨干。根据啤酒对欧洲经济的贡献的最新报告,2018年欧盟(EU)-28个国家出口了超过3200万的啤酒,2018年(Salan®等,2020a)出口。这占总生产的8%以上。为了在该领域进行更多的发展,必须增加对创新的投资,尤其是开发新品种的啤酒或新啤酒口味并扩大其生产线。酿造是以受控方式进行水,酵母,淀粉和啤酒花之间相互作用以获取啤酒作为成品的过程。不同类型的酵母也用于发酵啤酒。在酵母细胞发酵过程中,葡萄糖被转化为乙醇(乙醇)和二氧化碳气体,从而启动啤酒的形成。总体化学反应如下:C 6 H 12 O 6 + 2PO 4 3-→2C 2 H 5 OH 5 OH + 2CO 2 + 2ATP Breweries全球通常使用批处理发酵系统生产啤酒。发酵过程是借助许多酶在酿造的酵母细胞内进行的(Campbell,2017; Gomaa,2018)。酵母的主要类型是酿酒酵母和糖疗法,而其他一些重要的酵母是糖氢糖,糖疗法,brettanomyces bruxellensis,saccharomyces uvarum and torula delbrueckii(bokulich and Bokulich and Bamforth and Bamforth,bamforth,2013;酿造包含多个步骤,涉及处理谷物,麦芽,捣碎,过滤和发酵(Newman and Newman,2006)。在麦芽过程中,绿色麦芽或任何大麦被转化为稳定形式,并且添加了一些所需的调味剂,因此啤酒获得了特定的味道和香气(Linko等,1998)。捣碎是为了溶解淀粉,糖,蛋白质和其他产品的提取的谷物成分(Osman等,2002)。在发酵过程中,提取酒精并在啤酒中建立碳酸水平。在发酵过程结束时酵母,可以分别收集絮凝物。
如今,全球变暖是现代社会中最重要的关注之一,它需要考虑到环境,健康,经济等。化石燃料在这一现象中起着至关重要的作用,并且在过去几十年中找到替代方案一直是研究主题。在可用的一系列选择中,生物燃料是一种高效且在环境可持续的替代方案。生物丁醇预处理特性,例如高加热值,低波动性,高粘度和低腐蚀。此外,它是一个更安全的使用选择,它与汽油和其他燃料融合的能力将其变成了合适且有希望的可再生替代方案。生物丁醇可以由丙酮 - 丁醇 - 乙醇(ABE)发酵过程从农业产业的残留物中产生。生物丁醇与发酵汤的分离和纯化占工厂预算的40%,这是值得注意的。应用了各种分离技术,例如液 - 液体提取,膜人物剥离,真空闪光,膜过度蒸发,透明装置,反渗透,吸附等。一种适合的分离方法必须在产出中产生足够的丁醇浓度,并降低最终产品的成本,以便生物丁醇可以与其他燃料在经济上竞争。这项工作审查了现有的过程,用于将丁醇与安倍发酵的分离和纯化,包括高级方法。考虑环境和经济参数以及每种技术的上级和挑战,将详细讨论所有方法。
食品发酵包括各种各样的产品,从酸奶和奶酪等乳制品订书钉到全球享受的调味品,例如酱油和酸菜。细菌以及其他微生物(如酵母菌)有助于这些食物的独特品质。乳酸细菌(LAB)包括乳杆菌和链球菌等物种,是许多食品发酵的主要参与者。这些细菌将存在于原成分中的糖代谢,从而产生乳酸作为副产品。这不仅赋予发酵食品的特征性浓郁,而且通过创造酸性环境抑制有害细菌的生长来有助于其保存。
然而,这一年并非没有挑战。资金限制和扩大规模的困难是发酵过程中的两个最大瓶颈。消费者教育、理解和采用仍处于早期阶段。争取政府和私人投资的工作仍在继续。尽管存在这些阻力,但我们食品系统的严峻现实依然存在:到 2050 年,全球肉类消费量预计将大幅增加,仅畜牧业就占温室气体排放量的 11% 至 20%。综合起来,这些预测表明,迫切需要替代蛋白质提供的各种解决方案。