摘要。海藻是微生物种类丰富的来源,为筛选具有发酵植物奶生产潜力的乳酸菌提供了绝佳的机会。在这项工作中,我们将鉴定海洋乳酸菌 (LAB) 并将其用于改善植物奶发酵,为健康和可持续的乳制品替代品铺平道路。本研究采用的方法包括通过革兰氏和过氧化氢酶测试分离和鉴定 LAB。然后,将乳酸菌转移到植物和乳制品中发酵,以观察发酵植物产品的能力。结果表明,分离的细菌对植物奶的发酵效果优于乳制品,这表明海洋乳酸菌在植物奶发酵中具有应用潜力。
近年来,人们开发了各种生物技术方法来减少化学肥料和农药的滥用,促进植物生长和健康。最有吸引力、最安全、最环保的替代品包括基于植物有益微生物的替代品。经过对植物有益微生物的分离、选择和特性的长期研究,研究的主要方向是优化发酵过程,以生产高质量、大量的生物质/孢子及其进一步的配方。然而,应该按照“健康的土壤-健康的植物-健康的人类”的理念,制定进一步完善的方案,以改进配方生产的所有主要步骤。这篇简短的评论强调了用于植物有益微生物生物技术生产的技术的优缺点。
对环境污染,气候变化和能源安全的越来越担忧正在推动从化石碳源到更可持续的替代品的必要过渡。由于较低的环境影响,生物化学物质迅速获得了显着的可能性,这是一种潜在的可再生解决方案,尤其是在欧洲感兴趣的解决方案。在这种情况下,过程系统工程(PSE)有助于在多个量表和级别上进行决策,以最佳使用(可再生)资源。使用废物生物量或工业过失的发酵是生产这些产品的一种有希望的方法。但是,由于抑制作用或底物浓度较低,可以获得相对较低的产品浓度。因此,需要在下游处理中进行显着改进,以提高整体生物处理的竞争力。本文通过提供有关稀释发酵肉汤挥发性生物产品的纯化的新的PSE观点来支持可持续发展。由于纯化显着促进了生化生产过程的总成本(占总成本的20% - 40%),因此增强这一部分可能会大大提高整体生物过程的竞争力。高级先进的下游过程提供了恢复高纯度产品的可能性,同时通过连续去除抑制性产物来增强发酵步骤,并用当前的大部分水回收微生物。除了较高的生产率外,可以通过避免生物量损失,实现闭环运行并减少对淡水的需求,从而大大改善上游过程。应用热泵,热积分和其他工艺强化方法(PI)可以大大降低能量需求和CO 2排放。此外,使用可再生电力而不是传统化石能源的机会为(绿色)电力和化学工业脱碳迈出了重要的一步。
抽象的微生物本质上是普遍存在的,是人类,动物,环境和行星健康的核心。他们在食物链以及高质量,安全和健康的食物,尤其是发酵食品的生产中起着特别重要的作用。对于公众而言,这一重要角色并不总是显而易见的。在这里,我们描述了Kefir4all,这是一个公民科学项目,旨在为公众提供通过生产发酵食品的媒介(即牛奶开菲尔或水壶)提出的与微生物学有关的与微生物学有关的意识,知识和实践技能。在Kefir4All的过程中,来自二级学校和非上学环境的123位公民科学家参加了一项研究,通过执行和记录牛奶开发或饮水的牛奶开发剂的详细信息,以跟踪开菲尔的微生物组成的变化,他们在21周的项目中在他们的家中或学校进行了牛皮纸发酵。在研究开始时,为公民科学家提供了牛奶或水凯氏谷物来发酵。两种类型的开菲谷物都是半固醇,类似凝胶状的物质,由外多糖和蛋白质组成,其中包含细菌和酵母菌的共生群落。该项目的实验组成部分得到了许多教育和外展活动的补充,包括职业演讲和对我们的研究中心(开菲尔日)的现场访问。在研究结束时,向每个公民科学家提供了一份报告,其中详细介绍了其发酵活动的个性化结果。采用了许多方法来获得公民科学家的反馈和其他见解。评估是在KEFIR4ALL项目之前和之后进行的,以评估公民科学家对微生物学和发酵食品的自我报告的意识,知识和兴趣。通过评估返回的分析样本的数量以及整个项目中公民科学家的参与水平,从而获得了对公民科学参与水平的进一步见解。值得注意的是,调查结果表明,在进行该项目后,对Kefir4all公民科学家中科学的兴趣和一般知识提高了,并愿意参加进一步的公民科学项目。最终,Kefir4All代表了将公民科学成功整合到现有教育和研究系统中的一个例子。
Garambullo是一种多酚和富含纤维的水果,但是在体外发酵过程中的表现和潜在的衍生健康益处尚未探索。这项研究旨在通过对加拉布洛体外结肠发酵衍生的代谢产物进行富集分析,进行非靶向的代谢组学。此外,由于其生物学相关性,对短链脂肪酸(SCFA)进行了识别和量化。通过未靶向的代谢组学分析了发酵提取物(0、6和24 H发酵)。鉴定了总共50种代谢产物,例如苯,吲哚,苯酚和脂肪酸。丁酸是其中一种生产的SCFA,在24小时后增加(p <0.05)。结肠代谢产物的代谢组富集分析表明了几种条件的调节。这些结果表明,Garambullo结肠代谢产生的生物活性分子可能会对肠道和全身健康产生有益的影响。尽管应谨慎地解释富集分析的结果,但它们值得进一步研究Garambullo的健康益处。
深色发酵(DF)是一种生物学过程,能够从有机废物中产生氢气,这可以作为生物精炼厂中的基础发挥关键作用。,但仍需要优化DF的流体动力条件以增强气体液传质,从而减少了可溶性氢的自抑制作用。质量转移增强受到限制,因为对微生物的液压应力必须受到限制,并且该过程的经济可持续性必须保持。最近的结果表明,在层流和湍流方案之间的过渡区域中,DF增强了。为了更好地了解该制度中的3D流体动力特征,开发了一种改进的光学轨迹技术并将其应用于配备双型物件设备的2-L生物反应器。所提出的方法旨在同时使用三个摄像机来监测多达十个颗粒作为示踪剂的轨迹,但也能够在每个相机的2D图像中提供颗粒的实时位置,以最大程度地减少治疗后时间。应用了该方法,包括立体摄像机校准,实时和后处理以重建3D轨迹,并针对2D-PIV和CFD数据进行了验证。达成了良好的一致性,但是由于粒径,很难捕获附近壁和叶轮的区域。结果表明,与单个粒子作为示踪剂相比,使用五个颗粒的工作能够减少3-4的测量时间,而较高数量的示踪剂增加了伪像的镜头。
摘要:青贮是保存高水分牧草的有效技术之一。然而,豆科植物青贮的成功很大程度上取决于附生微生物菌群、缓冲能力和青贮牧草的水溶性碳水化合物含量。在本研究中,三种选定的乳酸菌 (LAB) 菌株被用作饲料豌豆 (Pisum sativum L.) 的微生物添加剂(10 6 CFU/g 鲜物质)。这些菌株包括双酶乳杆菌 (LS-65-2-2) 和植物乳杆菌 (LS-72-2),均从土耳其的牧场分离出来,还有枯草芽孢杆菌,它已经用于这些目的。目的是评估这些菌株对微生物组成和所得青贮饲料质量的影响。在 5 个时间点(第 0、2、5、7 和 45 天)进行青贮饲料开饲,重复 3 次。接种乳酸菌的效果在统计学上存在差异(P < 0.001)。研究结果显示,测试参数的值如下:pH(4.52–4.86)、乳酸菌(5.51–8.46 log 10 CFU/g 青贮饲料)、肠道细菌(2.24–3.61 log 10 CFU/g 青贮饲料)、酵母菌(6.20–7.03 log 10 CFU/g 青贮饲料)、中性洗涤纤维(38.85–41.93%)、酸性洗涤纤维(ADF,32.91–35.75%)和相对饲料价值(RFV,135.90–151.73)。与对照组相比,接种乳酸菌导致饲料豌豆青贮饲料的 pH 值显著下降,干物质 (DM) 回收率增加(P < 0.001)。青贮饲料中乳酸菌的丰度显著增加(P < 0.001),而接种青贮饲料中肠道细菌含量(P < 0.001)、pH、NH 3 -N(P < 0.01)和ADF(P < 0.05)降低。接种乳酸菌后,RFV 显著提高。总体而言,与枯草芽孢杆菌相比,添加乳酸菌可以改善发酵过程和青贮饲料质量,同时提高干物质回收率并降低青贮饲料 pH 值。
其他抑制化合物•某些酚类化合物可以抑制MLF,例如某些凝结的单宁,而其他类花青素也可以刺激它们。•已知农药残留物会导致MLF的缓慢,卡住或完全抑制•如果不使用正确的抗抗性细菌,则高L-乳酸含量(如果雄性酸初始水平高)可能会抑制MLF的良好实现。•使用壳聚糖或奇质衍生的新溶液进行处理会扰乱MLF的良好开始或完全实现,具体取决于葡萄酒状况和治疗时机。•某些酵母菌菌株,尤其是当它们努力完成酒精发酵时,可以释放有毒的代谢产物,从而引起MLF问题。•中链不饱和脂肪酸也会对细菌的生长和活性产生负面影响。
瘤胃代表一个动态的微生物生态系统,在响应饮食变化时,发酵代谢产物和微生物浓度会随着时间而变化。微生物基因组知识和动态建模的整合可以增强我们对瘤胃生态系统功能的系统级别的理解。但是,缺乏动态模型与瘤胃微生物群数据之间的这种整合。这项工作的目的是将通过16S rRNA基因扩增子测序确定的瘤胃微生物群时间序列整合到动态建模框架中,以将微生物数据与发酵过程中挥发性脂肪酸(VFA)的动态联系起来。为此,我们使用状态观察者的理论来开发一个模型,该模型从与每个VFA的特定产生相关的微生物功能代理数据中估算VFA的动力学。我们使用cowpi确定了微生物的代理,以推断瘤胃微生物群的功能潜力,并将其功能模块推断从KEGG(基因和基因组的京都百科全书)中推断出功能模块。使用来自体外rusitec实验的数据以及四头母牛的体内实验来挑战该方法。通过均方根误差(CRMSE)的变化系数评估模型性能。在体外案例研究中,乙酸盐的平均CVRMSE为9.8%,丁酸酯为14%,丙酸酯为14.5%。在体内案例研究中,乙酸盐的平均CVRMSE为16.4%,丁基率为15.8%,丙酸苯甲酸盐为19.8%。乙酸盐的VFA摩尔级分的平均CVRMSE为3.1%,丁酸酯为3.8%,丙酸酯为8.9%。我们的结果表明,与Microbiota时间序列数据集成的状态观察者有希望地应用了用于预测瘤胃微生物代谢的情况。
[3]。微藻生物量中碳水化合物的发酵是生产生物燃料的替代途径,尤其是因为某些微藻物种的淀粉,葡萄糖和/或纤维素在干重的基础上超过50%,没有木质素含量[4,5]。已经开发出各种方法将藻类生物量碳水化合物水解成可发酵的化合物[2,6,7]。尽管碳水化合物占干重的40%或更高的微藻生物量,但藻类水解物通常含有低糖浓度。例如,使用H 2 SO 4对小球藻生物量的水解产生了15 g/L的可发酵糖[8]。因此,对糖浓度相对较低的水解物必须有效,以实现高产量,糖转化率和生产力。具有游离细胞的传统发酵在可以实现的糖转换的体积生产率和程度上受到限制。批处理发酵的糖转化率很高,但体积生产力较低,尤其是当考虑排水,清洁和填充生物参与者的时间时。饲料批次发酵可以提高生产率,但仅适用于具有高糖浓度的原料,而生物质水解物并非总是可能的。最后,与游离细胞的连续培养的体积产生性受到生物催化剂的特异性生长速率的限制,尤其是对于糖浓度较低的水解产物。当使用游离细胞时,连续培养中的糖含量也很低。由于细胞保留在反应堆内,与生长速率的解耦操作相比,固定的细胞技术具有比使用自由细胞的固定型生产率明显更高的体积生产率[9,10]。细胞固定还可以促进其他策略,以提高糖至产品转化的产量(碳转化效率)以及下游加工的成本较低[11]。不合理的酵母细胞。
