由于从美国西海岸到檀香山的运输时间,精神细菌的潜在增加(He等,2010)。用自来水以1:2(杯/杯)的比例将米饭洗涤。将前两个洗涤米水(200毫升)收集在一个干净的玻璃罐中(满满2/3)。罐子上覆盖着薄纸,并用橡皮筋固定以防止害虫。覆盖的罐子在室温(24 o -26 o C)远离直接光线下存放。罐子储存两天而不会发抖,此时米饭会发出略带酸味的气味。在第3天,顶层形成的垫子泡沫。通过倒出并丢弃垫层来收集底部的多云液体(发酵冲洗水)。然后,在一个新的干净罐子中,将大约200毫升(1部分)与约400毫升(2份)全牛奶混合。罐子像以前一样被薄纸覆盖。罐子在室温下储存,远离直接光。四天后,将罐子的内容分成浮动的固体分数和黄色的液体分数。通过将黄色液体收集到新的容器中并存放在冰箱中,从而停止了发酵。重复三次收集发酵液的过程。
世界卫生组织[1]强调了需要改善食品和饮料的营养和功能特征,以提高生活质量并预防慢性疾病。许多食物通常会出现关键问题,例如高血糖反应,低生物蛋白质价值,高盐和脂肪浓度,缺乏功能性化合物,例如纤维和多酚,以及与高敏反应相关的成分。使用有益的微生物(例如乳酸菌(LAB))是通过生物活性化合物的合成或通过抗逆因素的降解来改善食品营养和功能性能的绝佳策略。近年来,已经确定了许多具有代谢特性的微生物,这些微生物已被确定为改善传统和新型发酵食品,并且阐明了它们的应用与发酵食品质量,安全性和健康促进特征之间的关系。在本期特刊中,提供了最新的科学证据,该证据证明了使用有益微生物所产生的食物的营养和功能特性。最近的科学努力增加导致了新的和传统发酵产品的开发,这些产品将微生物发酵的有益特征与动物和植物衍生的矩阵的营养特性相结合。De Bellis等人深入研究了与Weissella cibaria菌株产生EPS相关的一些方面。[3]。详细,应用于非小麦谷物(例如大麦和小扁豆)的生物加工技术(发芽和酸面团发酵)可以生产能够改善强化小麦面包的技术和营养特性的成分。发酵参数(本地或发芽谷物和豆类面粉,DY和温度)的调节可能会导致生产脱氧剂含有葡萄糖的酸味,该酸味适合于具有增强营养质量的面包(低HI和PGI),功能(高溶解性和总光纤含量)(高溶液和总纤维含量)和Sensory Attrib [2] [2] [2]。The strain selected as a high-EPS producer in the presence of sucrose was used to produce an EPS-enriched sourdough suitable for use as a fat replacer in baked goods [ 4 ].作者表征了W. cibaria c43-11产生的EPS,并研究了负责调节右旋糖酶(DSR)基因表达的可能的遗传调节元件[3]。使用来自亚洲梨和阿萨姆邦茶叶的发酵水提取物与乳杆菌植物和酿酒酵母的共同培养一起开发出具有改进特征的面包。尤其是,补充发酵水的酸面包含量少10%,饮食纤维高12%,总酚含量和总酚含量和抗氧化活性的含量比普通酸味面包高出2至三倍[5]。在本期特刊中包括,一项研究介绍了与传统酿酒酵母或II型酸面团发酵的不同面包面团相关的微生物多样性。
的发酵食品的安全性和改善的安全性,需要通过采用分子技术来隔离野生菌株的菌株,并将其鉴定到物种水平上。这些乳酸菌株用作食物发酵中的功能开胃培养物(Okorie等人2013,Owusu-Kwarteng等。 2015)。 最近,乳酸细菌一直是研究的重点,因为它们在食品发酵,保存,益生菌和功能性食品中强调了重要性。 木薯块茎可以加工成Fufu和Garri等各种非洲主食。 它仅涉及将根浸入水中,直到它们变软或擦洗。 但是,在发酵的最佳条件下,这大约需要三到四天(Ogbo 2013)。 已经发现不同的微生物在发酵过程中发挥重要作用。 在尼日利亚东南部,OGI也称为PAP是一种常规的发酵食品,构成了主要的主食和断奶食品。 它是由玉米,几内亚玉米或高粱制成的。 S。cerevisiae,L。plantarum,肠杆菌和其他乳酸细菌已从发酵的OGI中连续分离(Egwim等人。 2013)。 目前的研究旨在使用保守的和分子策略来隔离和表征乳酸细菌与乳酸发酵食品。 分离株可以用作功能性粮食生产中的起动培养物。2013,Owusu-Kwarteng等。2015)。最近,乳酸细菌一直是研究的重点,因为它们在食品发酵,保存,益生菌和功能性食品中强调了重要性。木薯块茎可以加工成Fufu和Garri等各种非洲主食。它仅涉及将根浸入水中,直到它们变软或擦洗。但是,在发酵的最佳条件下,这大约需要三到四天(Ogbo 2013)。已经发现不同的微生物在发酵过程中发挥重要作用。在尼日利亚东南部,OGI也称为PAP是一种常规的发酵食品,构成了主要的主食和断奶食品。它是由玉米,几内亚玉米或高粱制成的。S。cerevisiae,L。plantarum,肠杆菌和其他乳酸细菌已从发酵的OGI中连续分离(Egwim等人。2013)。目前的研究旨在使用保守的和分子策略来隔离和表征乳酸细菌与乳酸发酵食品。分离株可以用作功能性粮食生产中的起动培养物。
摘要:本研究研究了两株粟酒裂殖酵母菌株(NCAIM Y01474 T 和 SBPS)和两株日本裂殖酵母菌株(DBVPG 6274 T、M23B)发酵苹果汁的能力,并与酿酒酵母 EC1118 进行了比较,以了解它们对苹果酒挥发性化合物的影响。裂殖酵母的乙醇耐受性和脱酸能力使其成为常用酿酒酵母发酵剂的潜在替代品。尽管时间过程不同(10-30 天),但所有菌株均可完成发酵过程,裂殖酵母菌株降低了苹果汁中的苹果酸浓度。结果表明,每种酵母对苹果酒的挥发性成分都有不同的影响,使用主成分分析可以分离最终产品。苹果酒的挥发性成分在醇、酯和脂肪酸的浓度方面表现出显著差异。具体来说,絮凝剂菌株 S. japonicus M23B 增加了乙酸乙酯(315.44 ± 73.07 mg/L)、乙酸异戊酯(5.99 ± 0.13 mg/L)和异戊醇(24.77 ± 15.19 mg/L)的含量,而 DBVPG 6274 T 使苯乙醇和甲硫醇的含量分别增加到 6.19 ± 0.51 mg/L 和 3.72 ± 0.71 mg/L。在 S. cerevisiae EC1118 发酵的苹果酒中检测到大量萜烯和乙酯(例如辛酸乙酯)的产生。这项研究首次证明了 S. japonicus 在苹果酒酿造中的应用可能性,可以为产品提供独特的芳香味”。
维生素E是使用最广泛的维生素之一。在经典的维生素E(A-生育酚)的经典商业合成中,Isophytol的化学合成是关键的技术障碍。在这里,我们从微生物发酵法尼烯中建立了一个新的iSophytol合成过程。为了实现Farneene生产的有效途径,酿酒酵母被选为宿主菌株。首先,筛选了来自不同来源的B-氟尼烯合酶基因,并通过蛋白质工程和系统代谢工程,实现了酿酒酵母中的b -farnesene高产量(55.4 g/l)。这种法尼烯可以分为三个步骤,分为92%,在经济上与最佳的总化学合成相等,可以将其化学转化为Isophytol。此外,我们共同制作了番茄红素和法尼烯,以降低Farnesene的成本。基于这一新计划的工厂于2017年在中国湖北省成功运营,每年产量为30,000吨维生素E。这一新过程由于其低成本和安全性而彻底改变了维生素E市场。
这项研究旨在使用从Dahi(一种流行的印度发酵乳制品)中分离出的天然酵母乳酸启动联盟来开发发酵的小麦粉(FWF)。酵母菌和乳酸细菌(LAB)从当地家用达希样品中分离出来,以评估其牛奶发酵潜力。分子方法用于鉴定实验室分离株,而使用碳水化合物发酵型鉴定酵母菌株。用实验室分离乳杆菌和酵母分离型念珠菌球形乳杆菌制备达希样品,它们的组合显示出优质的感觉得分。使用实验室,酵母及其组合制备FWF,并对基于FWF的汤进行感觉评估。与市售的小麦粉/atta相比,制备的FWF含量较低(6%),碳水化合物(71.14%)和热量值(345.4 kcal)含量。微生物分析表明,大肠菌群,大肠杆菌和金黄色葡萄球菌的不存在,表明卫生制剂并抑制了变质和致病性细菌。FWF的低水分含量和酸性pH(4.4)有助于其存储稳定性。总而言之,使用DAHI的本机实验室生产的发酵小麦粉是一种具有成本效益,储存稳定的功能性食品,具有实用有益的微生物,适合促进肠道健康。
引言益生菌是消化健康不可或缺的益生菌,它是掺入食品中的活生物体,以维持胃肠道中的微生物平衡(Goel等,2020)。其中,乳酸菌中最大的属乳杆菌起关键作用。在系统发育上,乳酸杆菌根据16S rRNA序列分布在七组中(Nkhata等,2022)。这些细菌是发酵途径的关键参与者,表现出对其益生菌功能至关重要的不同特征(Hill等,2009)。乳酸菌的主要属,包括乳酸杆菌,白细胞杆菌和双歧杆菌,通过促进有益的微生物的生长并减少胃肠道疾病的发生率,从而对胃肠道健康产生了显着贡献(Marco等人,20211年)。
抽象食品发酵依赖于健壮的起动培养物的活性,这些培养物通常由乳酸细菌(例如乳酸菌和嗜热链球菌)组成。虽然噬菌体感染代表了可能导致发酵缓慢或失败的持续威胁,但它们在发酵中的有益作用也得到了赞赏。为了发展强大的起动培养物,重要的是要了解噬菌体如何与这些复杂微生物群落的组成景观相互作用并调节。培养依赖性和非依赖性方法对定义许多乳酸细菌(LAB)的单个噬菌体宿主相互作用具有重要作用。需要整合和扩展这些知识,以通过培养物,元基因组学和噬菌体学的结合来充分了解与发酵食品有关的这种相互作用的整体复杂性。有了这样的知识,人们认为可以开发特定于工厂特定的检测和监测系统,以确保强大而可靠的发酵实践。在这篇综述中,我们探索/讨论实验室的噬菌体 - 宿主相互作用,毒和温带噬菌体在微生物组成中的作用以及发酵食品的噬菌体的当前知识。
摘要:Dongcai以其美味的avor和营养价值而被爱。Dongcai中的微生物在其平坦,质量和安全性中起着至关重要的作用,而Dongcai的微生物群落在各个地区之间差异很大。然而,尚不清楚哪些主要的微生物在不同的传统dongcai以及它们如何影响其avor中。这项研究的目的是探索三个代表性的中国地区(Tianjin,Sichuan和Guangzhou)中传统发酵Dongcai的微生物多样性,并进一步评估其微生物功能。与最高的四川发酵的Dongcai相比,广东发酵的Dongcai的微生物多样性的多样性最低。发酵的Dongcai的主要属的分布因地区而异,但是肉欲,葡萄球菌,假单胞菌,鞘氨拟补膜,鞘氨虫,Burkholderia-Caballeronia-Paraburkholderia和Rhodococcus是普通的主要属。此外,嗜嗜血素细菌(HAB,即halomonas bacillus,virgibacillus等)和乳酸细菌(实验室,即魏森氏菌和乳杆菌)也很丰富。,Burkholderia- Caballeronia-Paraburkholderia,Rhodococcus,Sphingomonas,Ralstonia和Chromohalobacter在Sichuan样品中占主导地位。在天津样品中,乳酸杆菌,魏森氏菌,virgibacillus,肠杆菌,克雷伯氏菌和假单胞菌是最丰富的。微生物代谢功能的预测表明,碳水化合物,氨基酸,聚酮化合物,脂质和其他二次代谢物可用于生物合成。此外,这三种类型的dongcai的不同型号可能是由于以下事实:HAB和实验室的丰度与重要代谢物(例如盐,酸,氨基氮和糖)的量显着正相关。这些结果有助于我们理解不同类型的Dongcai和它们所包含的微生物之间的联系,并将为微生物群落与半发作泡菜中的微生物群落之间的关系提供参考。
摘要。这项研究研究了使用Casei乳杆菌及其对总板数(TPC),pH和抗菌活性的影响,研究了姜黄(Curcuma Longa L.)的发酵过程。这项研究遵循实验设计,研究了通过分析方差分析(ANOVA)分析的六种六种处理中的抗菌活性。tpc和pH数据,每种治疗的重复12次,使用IBM SPSS 26版(IBM,IBM,纽约,纽约,纽约,纽约)进行了分析,以识别显着差异(p <0.05)。研究结果显示,pH值显着变化为3.95,TPC分析显示发酵姜黄的细菌数量增加,细菌生长曲线在第3天达到峰值。抗菌分析证明了发酵时间对抑制区的影响,并且观察到对鼠伤寒沙门氏菌,大肠杆菌和乳杆菌的抑制作用增加。总而言之,发酵改变了姜黄素和类黄酮含量,TPC,pH和抑制区,从而提高了姜黄发酵的质量。