低维铁电体、亚铁电体和反铁电体由于其不同寻常的极性、压电、电热和热电特性而受到迫切的科学关注。层状二维范德华材料(如 CuInP 2 (S,Se) 6 单层、薄膜和纳米薄片)的铁电特性的应变工程和应变控制具有根本性的意义,尤其有望在纳米级非易失性存储器、能量转换和存储、纳米冷却器和传感器等高级应用中得到应用。在这里,我们研究了半导体电极覆盖的亚电介质 CuInP 2 S 6 薄应变膜的极性、压电、电热和热电特性,并揭示了失配应变对这些特性的异常强烈影响。特别是,失配应变的符号及其大小决定了压电、电热和热电响应的复杂行为。与许多其他铁电薄膜相比,应变对这些特性的影响是相反的,即“异常的”,对于这些铁电薄膜,平面外剩余极化、压电、电热和热电响应对于拉伸应变强烈增加,对于压缩应变则减小或消失。
非常规的铁电性型植物结构氧化物由于其出色的可伸缩性和硅兼容性而在纳米电子学上带来了巨大的机会。然而,由于可视化纳米晶体中的氧离子的挑战,它们的极化顺序和开关过程仍然难以捉摸。在这项工作中,极化开关和相关的极性 - 尖端相变中的氧转移在独立式ZRO 2薄膜中直接捕获在多个可稳态的相之间,而低剂量综合差异差异差相对比扫描传输电子(IDPC-STEM)。在抗fiferroeleelectric和铁电顺序与界面极化弛豫之间的双向转变在单位细胞尺度上进行了澄清。 同时,极化切换与单斜骨和正骨相之间的可逆Martensenitic转化以及两步的四面体到四面体到正常相变的ZR – O位移密切相关。 这些发现提供了对亚稳态多晶型物之间的过渡途径的原子见解,并揭示了(抗)铁电氟氧化物中极化顺序的演变。在抗fiferroeleelectric和铁电顺序与界面极化弛豫之间的双向转变在单位细胞尺度上进行了澄清。同时,极化切换与单斜骨和正骨相之间的可逆Martensenitic转化以及两步的四面体到四面体到正常相变的ZR – O位移密切相关。这些发现提供了对亚稳态多晶型物之间的过渡途径的原子见解,并揭示了(抗)铁电氟氧化物中极化顺序的演变。
用于计算超越互补金属氧化物半导体的铁电体。双极晶体管和互补金属氧化物半导体 (CMOS) 晶体管的微缩(即减小尺寸或增加总数 1 )取得了巨大成功,但随着半导体工艺的每一代发展,随着器件接近基本尺寸极限 2 ,微缩变得越来越困难。虽然摩尔微缩定律一直在延续,但工作电压的降低速度要慢得多,因为 Dennard 的微缩方案 3 只持续到 2003 年左右。研究人员目前正在探索其他方法,以继续遵循摩尔定律,使器件具有低工作电压(< 100 mV)和相应的低工作能量(每位 1-10 aJ),同时保持可接受的器件开关延迟(< 0.1 ns)。这推动了一系列替代的、超越 CMOS 的计算途径(例如,基于自旋、极化、应变等的途径)4、5 的研究。铁电体可实现非挥发性和低读/写能量,在存储器(例如铁电随机存取存储器)、逻辑或存储器内逻辑(例如铁电场效应晶体管 (FeFET) 应用 6、7 和负电容场效应晶体管)8、9 中引起了越来越多的关注。尽管引起了人们的关注,但问题在于大多数铁电器件都在高电压 6、7 (> 1 V) 下工作,因此与低功率操作不兼容 5。解决这个问题将标志着向前迈出的重要一步,并可能为铁电材料在超 CMOS 器件的出现中开辟道路。
纳米材料和生物结构文摘第 18 卷,第 1 期,2023 年 1 月 - 3 月,第 55 - 68 页琥珀酸物种对甘氨酸单晶的结构、光谱、光学、Z 扫描、倍频、光电导和抗菌性能的影响 NS Priya a、SA Chudar Azhagan b、* a 印度哥印拜陀尼赫鲁工程技术学院物理系 b 印度哥印拜陀政府技术学院物理系以琥珀酸为添加剂,通过传统溶剂缓慢蒸发路线生长甘氨酸单晶。研究了琥珀酸对甘氨酸同质异形体的生长、光学和介电性能的影响。通过振动 FTIR 光谱光度计鉴定了功能团的存在。较高频率范围内的低介电常数和介电损耗证明生长的晶体可用于倍频应用。计算了生长晶体的激光损伤阈值能量。通过 Z 扫描实验评估了添加琥珀酸的甘氨酸晶体的三阶非线性磁化率 χ (3) (esu)。 (2022 年 8 月 14 日收到;2023 年 1 月 12 日接受) 关键词:γ-甘氨酸、琥珀酸、介电材料、光子应用 1. 简介寻找新的复杂 NLO 材料是当前研究扩展科学和通信技术的基本部分。铁电材料在光电子领域具有广泛的工业应用,例如电容器、军事服务、执行器、电信、非易失性存储设备、自动门禁系统、高性能栅极绝缘体和医疗设备等 [1-2]。铁电材料因其明确的介电、压电和热电特性而成为广泛电子和机电一体化设备中的首选材料。近年来,具有非线性光学 (NLO) 特性的铁电材料因其在光电子和光子技术领域的潜在应用而备受关注。铁电琥珀酸具有良好的热电性能。琥珀酸是一种天然存在的有机材料,属于二羧酸,是三羧酸循环的中间体。它通常用于生物和工业应用,也用作红外 (IR) MALDI 分析方法中的基质 [3-4]。目前,琥珀酸晶体广泛用于制造高电子迁移率晶体管 (HEMT)。琥珀酸与有机材料的结合提高了其铁电性能 [5]。在多晶型晶体中,氨基酸甘氨酸是最简单的晶体,在环境条件下表现出三种不同的多晶型,即 α-甘氨酸、β-甘氨酸和 γ-甘氨酸。甘氨酸的有机和无机复合物最近因其铁电、介电和非线性光学特性而受到科学界的关注。γ-甘氨酸晶体表现出强压电和非线性光学效应 [6-8]。甘氨酸同质异形体的非线性和介电响应是器件制造应用的重要参数。为了制造非线性光学器件,材料应在高频区域具有低介电常数和低介电损耗。此外,还要减少微电子工业中的 R c 延迟。如今,各种研究人员报告了 γ-甘氨酸单晶的一些重要特性 [9-12]。因此,在目前的研究中,已从琥珀酸添加剂环境中收获了 γ-甘氨酸单晶。
通过使用PZT及其复合材料T. K. Mandal * 1,Vipin Patait 2 1 I Icfai Tech School,Icfai University,Rajawala Road,Selaqui,Dehradun,Dehradun,Dehradun,Dehradun,India India 2 Samrat Ashok Ashok Technolist,Madish,Madish,Madish,通过PZT及其复合材料T. K. Mandal * 1纯化废水的纯化。 Mandal@iudehradun.edu.edu.in抽象铅锆钛酸盐(PZT)及其复合铁电材料已被研究用于纯化含有有机染料的废水。 已经审查了不同研究人员对PZT的最新报道,以审查了在染料染料降解中的光催化应用。 已经回顾了不同作者的AS准备PZT材料的合成,表征和特性。 还研究了不同研究人员的PZT和类似铁电材料的光降解活性以及增强光催化性能的策略。 关键字:PZT,铁电,光催化,压电分析,压电催化分析。通过PZT及其复合材料T. K. Mandal * 1纯化废水的纯化。 Mandal@iudehradun.edu.edu.in抽象铅锆钛酸盐(PZT)及其复合铁电材料已被研究用于纯化含有有机染料的废水。已经审查了不同研究人员对PZT的最新报道,以审查了在染料染料降解中的光催化应用。已经回顾了不同作者的AS准备PZT材料的合成,表征和特性。还研究了不同研究人员的PZT和类似铁电材料的光降解活性以及增强光催化性能的策略。关键字:PZT,铁电,光催化,压电分析,压电催化分析。
摘要。在本章中,我们回顾了极化的现代理论的物理基础,强调如何根据晶体的累积的绝热流量来定义极化。我们解释了极化如何与Bloch波形的浆果相密切相关,因为波形跨越了布里鲁因区域,或等同于由Bloch波形构建的Wannier功能的电荷中心。该公式的最终特征是极化仅定义了一个“极化量子”,换句话说,极化可以被视为多价值数量。我们讨论了该理论的序列,以了解铁电材料的物理理解,包括极化反转,压电效应以及在表面和界面上极性电荷的出现。这样做,我们给出了几个实例,这些示例是钙钛矿铁电中与极化相关量的现实计算,这说明了当前方法如何为介电和铁电材料的现代计算研究提供了强大而有力的基础。
第 2 单元:静态场中绝缘体的介电特性:极化和介电常数、非原子气体介电常数的原子解释、非原子气体介电常数的定性分析、多原子分子的定性和定量介电常数、固体和液体中的内部场、固体的电常数、铁电材料的一些特性、自发极化压电性。
基于反铁电的介电电容器因其出色的储能性能和在收集脉冲功率方面的非凡灵活性而备受关注。尽管如此,迄今为止,尚未阐明与储能过程固有耦合的原位原子级结构演化途径,以最终理解其机制。本文报道了反铁电PbZrO 3 在存储电子束照射的能量过程中的时间和原子分辨率结构相演变。通过采用最先进的负球差成像技术,本文介绍的定量透射电子显微镜研究阐明了与晶胞体积变化和极化旋转相关的极性氧八面体的层次演化解释了逐步的反铁电到铁电相变。特别是,在动态结构研究过程中建立了一种非常规的铁电类别——具有独特摆线极化序的铁电畸变相。通过阐明原子尺度相变途径,该研究的结果为探索具有非极性到极性相变的储能材料中的新型铁致畸变相开辟了一个新领域。
拟议的会议主题 • 二维材料和器件中的相变 • CMOS 兼容铁电材料和器件 • 新兴计算范式的基本材料需求 • 电化学和储层存储器和计算设备 • 开关现象的可扩展建模和计算 • 机器学习在设备建模和特性中的应用 • 材料、设备和系统的共同设计 • 先进的表征技术
