STO 在室温下是一种具有钙钛矿立方体结构的能带绝缘体。在 ≈ 105 K 时,氧八面体围绕其一个主轴发生反铁畸变旋转。[19] 原始的 STO 是一种量子顺电体。[20] 然而,在掺杂少量 Ca 或用 O 18 取代 O 16 后,铁电转变会恢复,其铁电居里温度取决于 Ca [21] 或 O 18 的浓度。[22,23] 产生氧空位,或用 La 取代 Sr 或用 Nb 取代 Ti,可以将 STO 变成导体,甚至是超导体,其转变温度非单调地取决于掺杂。已经证明,超导性可以存在于掺杂的 STO 的类铁电体中,甚至可以通过引入铁电性来增强。[24–30]
摘要:铁电范德华(VDW)异质结构的接口驱动效应为搜索替代设备体系结构提供了新的机会,以克服von Neumann瓶颈。但是,它们的实施仍处于起步阶段,主要是通过电气控制。在寻求新型神经形态体系结构时,制定其他光学和多态控制的策略是最大的兴趣。在这里,我们证明了铁电场效应晶体管(FEFET)的铁电偏振状态的电和光学控制。完全由Res 2/hbn/cuinp 2 S 6 VDW材料制成的FeFets达到的ON/OFF比率超过10 7,磁滞存储器窗口最大为7 V宽,多个寿命超过10 3 s。此外,Cuinp 2 S 6(CIPS)层的铁电偏振可以通过光激发VDW异质结构来控制。我们进行了波长依赖性研究,该研究允许在极化的光学控制中识别两种机制:带对波段光载体在2D半导体RES 2中生成2D半导体电压,并进入2D Ferroectric CIPS。最后,通过在三种不同的突触模式下操作FEFET来证明异突触可塑性:电刺激,光学刺激和光学辅助突触。模拟关键的突触功能,包括电气长期可塑性,光电可塑性,光学增强和峰值速率依赖性可塑性。模拟的人工神经网络表现出非常出色的精度水平,即接近理想模型突触的91%。这些结果为未来对光面性VDW系统的研究提供了新的背景,并将铁电VDW异质结构放在下一个神经形态计算体系结构的路线图上。关键字:神经形态计算,突触,光电子,铁电,二维材料■简介
先前的实验提供了分别在二维材料中滑动铁电性和光激发层间剪切位移的证据。在这里,我们发现通过激光照明,在H -BN双层中令人惊讶的0.5 ps中可以实现垂直铁电的完全逆转。综合分析表明,铁电偏振转换源自激光诱导的层间滑动,这是由多个声子的选择性激发触发的。从上层n原子的P z轨道到下层B原子的P z轨道的层间电子激发产生所需的方向性层间力,激活了平面内光学TOTO TOTO TOS TOTO to-1和LO-1声音声模式。由TO-1和LO-1模式的耦合驱动的原子运动与铁电软模式相干,从而调节了动态势能表面并导致超快铁电偏振反转。我们的工作为滑动铁电的超快偏振转换提供了一种新颖的微观见解。
本报告是作为由美国政府机构赞助的工作的帐户准备的。既不是任何雇员,他们的任何雇员,其任何雇员,分包商或其雇员,都能对准确性,完整性或任何第三方使用或任何信息的使用结果,或代表其使用任何信息,私人或代表其使用权的保证,或承担任何法律责任或责任,或者任何第三方使用,或者没有任何信息,或代表其使用权,或代表其使用权,或代表其使用权限,或代表其使用权限。 以本文提及任何特定的商业产品,流程或服务,商标,制造商或其他方式不一定构成或暗示其认可,建议或受到美国政府或其任何机构或其承包商或其承包商或分包商的认可。 本文所表达的作者的观点和观点不一定陈述或反映美国政府或其任何机构的观点和意见。既不是任何雇员,他们的任何雇员,其任何雇员,分包商或其雇员,都能对准确性,完整性或任何第三方使用或任何信息的使用结果,或代表其使用任何信息,私人或代表其使用权的保证,或承担任何法律责任或责任,或者任何第三方使用,或者没有任何信息,或代表其使用权,或代表其使用权,或代表其使用权限,或代表其使用权限。以本文提及任何特定的商业产品,流程或服务,商标,制造商或其他方式不一定构成或暗示其认可,建议或受到美国政府或其任何机构或其承包商或其承包商或分包商的认可。本文所表达的作者的观点和观点不一定陈述或反映美国政府或其任何机构的观点和意见。
摘要:纳米级铁电2D材料提供了研究曲率和应变对材料功能的影响的机会。在其中,由于室温铁电位的组合,对少数层厚度的可伸缩性以及由于2个极高的共存性,Cuinp 2 S 6(CIPS)近年来引起了近年来的巨大研究兴趣。在这里,我们通过压电响应力显微镜和光谱探索了CIPS极化的局部曲率和应变影响。为了解释观察到的行为并使2D CIPS中的曲率和应变效应脱离,我们介绍了有限的元素landau- ginzburg-德文郡模型,揭示了经受拉伸菌株和压缩应变的地区的滞后特性的强烈变化。压电力显微镜(PFM)的结果表明,弯曲会诱导CIPS中的铁晶域,并且极化 - 电压磁滞回路在弯曲和非弯曲区域不同。这些研究提供了有关曲率工程纳米电子设备的制造的见解。关键字:Cuinp 2 S 6,铁电,挠性,应变,曲率,2D材料,压电响应力显微镜W
可再生能源的未来依赖于发现用于高密度储能的新材料。1 由于其多功能性、高极化电位和介电常数,铁电 (FE) ABO 3(A、B = 各种金属离子)钙钛矿是电容器技术中一类受欢迎的材料。2、3 PbTiO 3 和类似的钙钛矿基电容器由于 A 位 (Pb) 与 O 的偏心杂化而表现出出色的能量存储密度。3 然而,Pb 的毒性限制了它们的商业使用,因此需要无铅 FE 替代品。4 遗憾的是,由于 BO 6 八面体旋转/倾斜的反铁电畸变 (AFD) 畸变,导致中心对称 Pnma 空间群的优先稳定,室温下无铅 ABO 3 钙钛矿中的 FE 不稳定性受到抑制。 5 缺陷工程(Ca 掺杂、氧空位等)已被有效利用,通过修改 ABO 3 钙钛矿中的局部 A/B 位对称性来克服这些 AFD 畸变。6 传统上,
由于某些化学成分表现出所谓的杂化铁电性不当,近年来,近年来,ruddlesden-popper氧化物中温度依赖性的相变的次要氧化氧化物氧化物中的温度依赖性相变。然而,目前几乎没有理解这些相变的静水压力依赖性。本文中,我们介绍了对双层ruddlesdledlesden-popper阶段Ca 3 Mn 2 O 7和Ca 3 Ti 2 O 7的高压粉末同步X射线衍射实验和Abinitio研究的结果。在两种化合物中,我们都观察到一阶相变,结合了我们的密度功能理论计算,我们可以将其结合分配为极地A 2 1 AM和非极性ACAA结构。有趣的是,我们表明,尽管压力的施加最终有利于非极相,正如适当的铁电体所观察到的那样,但存在压力实际上可以增加极性模式振幅的响应区域。可以通过考虑八面体倾斜和旋转对静水压力及其三线性耦合与极性不稳定的旋转的多样化响应可以无障碍。
铁电体是一类具有电、机械和热特性之间各种相互作用的材料,这些特性使其具有丰富的功能。为了实现集成系统,必须将这些功能集成到半导体工艺中。为此,众所周知的铁电材料(例如钙钛矿类)的复杂性导致了严重的问题,限制了其在集成系统中的应用。在过去十年中,在氧化铪基材料中发现铁电性引起了人们对该领域的兴趣。最近,氮化铝钪中也验证了铁电性,这扩展了未来在集成电子学中看到丰富铁电功能的潜力。本文讨论了这两种材料系统在各种应用中的前景。
摘要 - 我们报告了ALSCN屏障宽带氮化物晶体管中铁电盖的首次观察。通过直接外观生长生长所实现的这些铁热型装置,其中一类新的铁电晶体管本身是极性的,其中半导体是极性的,并且结晶铁电屏障与底物搭配。迄今为止,此处报道的铁热室使用最薄的氮化物高和铁电屏障,以在4 A/mm处提供最高的电流,以及在任何铁电晶体管中观察到的最高速度ALSCN晶体管。ferrohemts hysteric i d-v gs环,阈值斜率低于玻尔兹曼的极限。对照ALN屏障Hemt既不表现出滞后,也不表现出子螺栓行为。这些结果将第一个外延高K和铁电屏障技术引入了RF和MM-Wave电子设备,但它们也引起了人们的兴趣,它是将数字电子中记忆和逻辑功能相结合的新材料平台。
具有低能量极化切换的半导体铁电材料为铁电场效应晶体管等下一代电子产品提供了平台。最近在过渡金属二硫属化物薄膜双层中发现的界面铁电性为将半导体铁电体的潜力与二维材料器件的设计灵活性相结合提供了机会。这里,在室温下用扫描隧道显微镜展示了对略微扭曲的 WS 2 双层中铁电畴的局部控制,并使用畴壁网络 (DWN) 的弦状模型了解它们观察到的可逆演化。确定了 DWN 演化的两种特征机制:(i) 由于单层在畴边界处相互滑动,部分螺旋位错的弹性弯曲将具有双堆叠的较小畴分开;(ii) 主畴壁合并为完美的螺旋位错,这些位错成为反转电场后恢复初始畴结构的种子。这些结果使得利用局部电场对原子级薄半导体铁电畴进行完全控制成为可能,这是实现其技术应用的关键一步。
