摘要:本文研究了Ba离子改性的典型氧化物单轴铁电单晶Pb5Ge3O11的一些铁电性质,包括介电常数、DSC、铁电极化和电热效应(ECE)测量。测量结果表明,增加Ba掺杂会显著影响所有测量参数,主要是通过降低居里温度、逐渐扩散相变、降低极化值以及矫顽场来影响。整体ECE的下降受到极化降低的影响。与纯PGO单晶相比,这一降幅从1.2K降至0.2K。然而,扩散相变的影响增加了其发生范围(高达30K),这可能对应用有益。
制造了用于存储器和神经形态应用的具有 Hf 0.5 Zr 0.5 O 2 栅极绝缘体的三栅极铁电 FET,并对其进行了多级操作表征。电导和阈值电压表现出高度线性和对称的特性。开发了一种紧凑的分析模型,以准确捕捉 FET 传输特性,包括串联电阻、库仑散射和垂直场相关的迁移率降低效应,以及阈值电压和迁移率随铁电极化切换的变化。该模型涵盖亚阈值和强反转操作。额外的测量证实了铁电切换,而不是基于载流子捕获的存储器操作。紧凑模型在用于深度神经网络在线训练的模拟平台中实现。
摘要:本文研究了Ba离子改性的典型氧化物单轴铁电单晶Pb5Ge3O11的一些铁电性质,包括介电常数、DSC、铁电极化和电热效应(ECE)测量。测量结果表明,增加Ba掺杂会显著影响所有测量参数,主要是通过降低居里温度、逐渐扩散相变、降低极化值以及矫顽场来影响。整体ECE的下降受到极化降低的影响。与纯PGO单晶相比,这一降幅从1.2K降至0.2K。然而,扩散相变的影响增加了其发生范围(高达30K),这可能对应用有益。
理解强自旋轨道耦合的窄带半导体中自旋极化载流子弛豫的基本散射过程,对于自旋电子学的未来应用至关重要。[1–8] 一个核心挑战是利用自旋轨道相互作用,在没有外部磁场的情况下实现高效的信息处理和存储。[6–12] 当表面或界面发生反转不对称时,或当自旋轨道相互作用存在于块体中时,可引起较大的拉什巴效应。[13–17] 结果,电子态的自旋简并度被提升,其自旋分裂变为 Δ E = 2 α R | k |,它一级线性依赖于动量| k |和拉什巴效应的强度,用所谓的拉什巴参数 α R 表示。 [18,19] 较大的 Rashba 效应被认为是实现增强自旋极化电流控制、[20,21] 高效自旋注入 [10,22] 和自旋电荷相互转换、[23–26] 较大自旋轨道扭矩、[5,27] 的关键。
在涉及铁电氧化物的外延异质结构中,应变与电极化之间存在强耦合,机械和静电边界条件的组合为设计具有极大增强或全新功能的新型人工层状材料提供了巨大的机会。仅应变工程就可用于显著提高铁电体的转变温度,控制铁弹畴的类型和排列,甚至稳定名义上非铁电材料的铁电性。[1–3] 同时控制静电边界条件可以进一步创建具有多种形态、复杂有序、非平凡极性拓扑和增强磁化率的纳米级畴模式。[4–13]
a 北京邮电大学理学院信息光子学与光通信国家重点实验室,北京 100876,中国。电子邮件:bike@bupt.edu.cn b 清华大学材料科学与工程学院新型陶瓷与精细工艺国家重点实验室,北京 100084,中国。电子邮件:wxh@tsinghua.edu.cn c 哥伦比亚大学应用物理和应用数学系,纽约,NY 10027,美国。电子邮件:sb2896@columbia.edu d 布鲁克海文国家实验室凝聚态物理与材料科学系,纽约州厄普顿 11973,美国 e 中国科学院物理研究所北京凝聚态物理国家实验室,北京 100190,中国 † 提供电子补充信息(ESI)。请参阅 DOI: 10.1039/ d0tc05975g
铁电场效应晶体管 (FeFET) 因其良好的工作速度和耐用性而成为一种引人注目的非易失性存储器技术。然而,与读取相比,翻转极化需要更高的电压,这会影响写入单元的功耗。在这里,我们报告了一种具有低工作电压的 CMOS 兼容 FeFET 单元。我们设计了铁电 Hf 1-x Zr x O 2 (HZO) 薄膜来形成负电容 (NC) 栅极电介质,这会在少层二硫化钼 (MoS 2 ) FeFET 中产生逆时钟极化域的磁滞回线。不稳定的负电容器固有支持亚热电子摆幅率,因此能够在磁滞窗口远小于工作电压的一半的情况下切换铁电极化。 FeFET 的开/关电流比高达 10 7 以上,在最低编程 (P)/擦除 (E) 电压为 3 V 时,逆时针存储窗口 (MW) 为 0.1 V。还展示了强大的耐久性 (10 3 次循环) 和保留 (10 4 秒) 特性。我们的结果表明,HZO/MoS 2 铁电存储晶体管可以在尺寸和电压可扩展的非易失性存储器应用中实现新的机会。
开发了铁电纤锌矿氮化铝钪 (Al 1 − x Sc x N) 固溶体的 Landau – Devonshire 热力学能量密度函数。该函数使用现有的实验和理论数据进行参数化,能够准确再现块体和薄膜的成分相关铁电特性,例如自发极化、介电常数和压电常数。发现纤锌矿结构保持铁电性的最大 Sc 浓度为 61 at. %。对 Al 1 − x Sc x N 薄膜的详细分析表明,铁电相变和特性对基底应变不敏感。这项研究为新型铁电纤锌矿固溶体的定量建模奠定了基础。
1北京邮政与电信大学科学学院信息光子学和光学通信的关键实验室,中国北京100876。电子邮件:bike@bupt.edu.cn 2国家主要实验室新陶瓷和精细处理,材料科学与工程学院,北京大学,北京大学,北京100084,电子邮件:wxh@tsinghua.edu.edu.cn.cn 3 3 3 3 3 3应用和应用数学部门sb2896@columbia.edu 4浓缩物理和材料科学系,布鲁克黑文国家实验室,纽约州阿普顿市11973 5北京国家冷凝物质物理学实验室,物理学研究所,中国学院科学研究所,贝吉利亚学院,北京100190,中国电子补充信息(ESI)。参见doi:10.1039/x0xx00000x
硅光子学目前是紧凑和低成本光子整合电路发展的领先技术。尽管具有巨大的潜力,但某些局限性,例如由于硅的对称晶体结构仍然存在。相比之下,钛酸钡(BTO)表现出强烈的效果。在这项研究中,我们证明了在硅启用硅式平台上具有高质量转移的钛酸钡铁电混合综合调制器。BTO在硅Mach-Zehnder干涉仪上提出的杂种整合表现出EO调制,其VπL低至1.67 V·CM,从而促进了紧凑型EO调节剂的实现。BTO与SOI波导的混合整合有望为高速和高效率EO调节剂的发展铺平道路。
