摘要:由于热力学的局限性,电子的玻尔兹曼分布阻碍了晶体管晶体管的进一步减少功耗。然而,随着铁电材料的出现,预计将解决此问题。在此,我们基于CIPS/MOS 2 van der waals杂结型演示了或逻辑铁电位晶体管。利用铁电材料的电场放大,CIPS/MOS 2 VDW铁电晶体管在三个数量级上的平均亚阈值摇摆(SS)为52 mV/dec的平均下阈值(SS),最小SS SS SS SS SS SS SS SS SS SS SS SS/DEC的最低限度为BoltzMann限制,从而在室内温度下限制。双门控铁电位晶体管表现出出色或逻辑的操作,供应电压小于1V。结果表明,由于其在距离内造成的,陡峭的suppherope subthers thrope subphersholt swing and Powdertage and plow show thres thrope subshort swing and show thershold swing and show supshort swing and show powertapt and pow showtage and powertage and the cips/mos 2 vdw铁电晶体管具有很大的潜力。
基于人工突触的受脑启发的神经形态计算硬件为执行计算任务提供了有效的解决方案。然而,已报道的人工突触中突触权重更新的非线性和不对称性阻碍了神经网络实现高精度。在此,这项工作开发了一种基于 α -In 2 Se 3 二维 (2D) 铁电半导体 (FES) 中的极化切换的突触记忆晶体管,用于神经形态计算。α -In 2 Se 3 记忆晶体管利用记忆晶体管配置和 FES 通道中电配置极化状态的优势,表现出出色的突触特性,包括近乎理想的线性度和对称性以及大量可编程电导状态。因此,α -In 2 Se 3 记忆晶体管型突触在模拟人工神经网络中的数字模式识别任务中达到了 97.76% 的高精度。这项工作为在先进的神经形态电子学中使用多端 FES 记忆晶体管开辟了新的机遇。
铁电器已被证明是高性能非易失性记忆的出色基础,其中包括Memristors,这些记忆在人工突触和内存计算的硬件实现中起着至关重要的作用。在这里,据报道,新兴的范德华(Van der Wa)可用于成功实现异突触可变性(一种基本但很少模仿的突触形式),并实现在10 3的上方3级级别的较高量相似的较大范围的较大范围的抗性转换率,并实现抗性切换比。铁电α -In 2 SE 3通道的极化变化负责各种配对端子处的电阻切换。α-In 2 Se 3的第三个端子在PicoAmpere级别表现出对通道电流的非挥发性控制,从而赋予了picojoule读取能量消耗的设备,以效仿缔合性异突触性学习。模拟证明,可以在α -IN 2 SE 3中性网络中实现超级访问和无监督的学习方式,具有较高的图像识别精度。此外,这些弹性设备自然可以实现布尔逻辑,而无需其他电路组件。结果表明,Van der Waals铁电体在复杂,节能,受脑力启发的计算系统和内存计算机中的应用中具有很大的潜力。
八面体外壳。它具有最低温度的菱形晶格(三角形晶体系统,r3m),在-70°C时在-70°C下的正交晶格(B2mm),在5°C下以5°C的四方晶格(P4mm),并在120°C [30°C [3,4 4°C [3,4 4°C [3,4 c [3,4)。它也显示出滞后,在加热和冷却之间的过渡温度存在差距。在眼镜中也可以看到这样的过渡延迟,这意味着系统的一阶转变,其中系统需要时间和激活能才能完成过渡。在BTO中,据信激活来自与自发极化的不同比对相关的差异[5-7]。BTO中的铁电性来自晶格中的对称性破裂,在远距离库仑力和短距离排斥之间存在微妙的平衡
随着相关应用领域的扩大,人们对 AlN 基 III 族金属氮化物半导体合金(如 (Al,Ga)N 和 (Al,In,Ga)N)的关注度也与日俱增。首先,人们之所以对它们感兴趣,是因为它们具有可调特性,可用于发光二极管 (LED) 和其他光电应用 [1],并且具有宽带隙 (WBG) 半导体特性,可用于射频 (RF) 和电力电子应用中的高电子迁移率晶体管 (HEMT)。[2] 2009 年,首次有报道称在 AlN 中添加钪可显著提高压电响应 [3],并很快被用于压电薄膜器件,如手机中的薄膜体声波谐振器 (FBAR)。 [4] 最近有关 Al 1-x Sc x N(x ≥ 0.1)的铁电性的报道,作为第一种纤锌矿铁电材料,引起了进一步的科学兴趣[5,6],也引起了作为混合逻辑存储器设备候选者的重大技术兴趣。
摘要:HfO 2 中铁电性的发现引起了人们对其在存储器和逻辑中的应用的极大兴趣,因为它具有 CMOS 兼容性和可扩展性。使用铁电 HfO 2 的器件正在被研究;例如,铁电场效应晶体管 (FEFET) 是下一代存储器技术的主要候选者之一,因为它具有面积小、能效高和运行速度快等优点。在 FEFET 中,铁电层沉积在 Si 上,界面处不可避免地会形成厚度约为 1 nm 的 SiO 2 层。该界面层 (IL) 增加了切换极化和写入存储器所需的栅极电压,从而增加了操作 FEFET 所需的能量,并使该技术与逻辑电路不兼容。本研究结果表明,铁电 Hf 0.5 Zr 0.5 O 2 基金属氧化物半导体 (MOS) 结构中的 Pt/Ti/薄 TiN 栅极电极可以远程清除 IL 中的氧气,将其减薄至约 0.5 纳米。IL 的减少显著降低了铁电极化切换电压,同时剩余极化强度增加约 2 倍,极化切换突变度增加约 3 倍,这与密度泛函理论 (DFT) 计算结果一致,该计算模拟了 IL 层在栅极堆栈静电中的作用。剩余极化强度和极化切换突变度的大幅增加与清除过程中的氧扩散相一致,氧扩散减少了 HZO 层中的氧空位,从而使部分 HZO 晶粒的极化脱钉扎。关键词:铁电性、远程清除、夹层、EOT 减少、极化■ 介绍
摘要:HfO 2 中铁电性的发现引起了人们对其在存储器和逻辑中的应用的极大兴趣,因为它具有 CMOS 兼容性和可扩展性。使用铁电 HfO 2 的器件正在被研究;例如,铁电场效应晶体管 (FEFET) 是下一代存储器技术的主要候选者之一,因为它具有面积小、能效高和运行速度快等优点。在 FEFET 中,铁电层沉积在 Si 上,界面处不可避免地会形成厚度约为 1 nm 的 SiO 2 层。该界面层 (IL) 增加了切换极化和写入存储器所需的栅极电压,从而增加了操作 FEFET 所需的能量,并使该技术与逻辑电路不兼容。本研究结果表明,铁电 Hf 0.5 Zr 0.5 O 2 基金属氧化物半导体 (MOS) 结构中的 Pt/Ti/薄 TiN 栅极电极可以远程清除 IL 中的氧气,将其减薄至约 0.5 纳米。IL 的减少显著降低了铁电极化切换电压,同时剩余极化强度增加约 2 倍,极化切换突变度增加约 3 倍,这与密度泛函理论 (DFT) 计算结果一致,该计算模拟了 IL 层在栅极堆栈静电中的作用。剩余极化强度和极化切换突变度的大幅增加与清除过程中的氧扩散相一致,氧扩散减少了 HZO 层中的氧空位,从而使部分 HZO 晶粒的极化脱钉扎。关键词:铁电性、远程清除、夹层、EOT 减少、极化■ 介绍
†同等贡献;电子邮件:aaron.thean@nus.edu.sg摘要 - 我们首次成功证明了创新的后端(beol)兼容的电磁调节器和内存(Eomm)基于niobate基于绝缘体(LNOI)的niobate(lnoi)Micro-Ring Rings Resonator(MRR)的5 ZRRING 0. ZRRICTRRICRICRICRICRICRICRICTRRICRICTRICTRICTRICRICRICTRRICRICTRICRICRICTRICTRICTRICTRICTRICRICRONE (HZO)非挥发性模拟记忆。高的非易失性记忆和调制性能都在单个紧凑型装置中实现,高灭绝比为13.3 dB,出色的效率为66 pm/v,稳定的九态开关,创纪录的耐力超过10 9个循环。这是通过利用LNOI中的Pockels效应来实现的,这是由残留的HZO铁电偏振的电场效应引起的。我们研究了由Eomm和Hybrid热光调制的Eomm启用的可重新配置的Chiplet-interposer光子互连的系统实现。我们的模型显示出与常规电气插座互连相比,潜在的70%能效提高。我们还测试了Eomm与Poet Technologies的400G TX/RX光学插入器芯片的集成,并研究了Eomm设备的有限规模演示。
摘要:在环境污染日益严重的情况下,为推动绿色能源的研究,介电陶瓷储能材料正受到广泛研究,其具有充放电循环极快、耐用性高的优点,在新能源汽车、脉冲电源等方面有广阔的用途。但普通介电陶瓷铁电材料储能密度较低,因此,本文以BaTiO 3 (BT)为基础,划分出8个组分,通过传统固相烧结法,将AB位置替换为不同比例的各类元素,以提高其储能密度,提高BT基铁电材料的储能效率。本文研究了掺杂样品的XRD、Raman、铁电、介电、阻抗测试结果,确定了最佳组分。通过Bi3+、Mg2+、Zn2+、Ta5+、Nb5+五种元素掺入制备了(1-x)BT-xBi(Mg1/3Zn1/3Ta1/6Nb1/6)O3系列陶瓷。随着掺杂量x的增加,电滞回线变细,饱和极化强度与剩余极化强度下降,储能密度先上升后下降。x=0.08以后的介电特性呈现平缓的介电峰,说明已经形成了铁电弛豫。最佳组分x=0.12的储能密度和效率分别达到了1.75J/cm3和75%,居里温度约为-20◦C,具有在室温下使用的潜力。
强度有助于确定与相动力学(n、k 和活化能 E a )和伴随生长相关的各种参数。钙钛矿的有效活化能
