DNA N 6 -甲基腺嘌呤(6mA)修饰在生物体中广泛存在,在调控细胞过程方面发挥着重要的功能性作用。作为生物湿法冶金的模式生物,Acidithiobacillus ferrooxidans在酸性条件下可以通过氧化亚铁(Fe 2+ )和各种还原性无机硫化物(RISC)获取能量。为探讨A. ferrooxidans中基因组DNA甲基化与两种氧化代谢途径切换之间的联系,利用6mA-IP-seq技术评估了不同条件下培养的A. ferrooxidans基因组中的6mA景观。在Fe 2+和RISCs氧化条件下分别鉴定出214个和47个6mA的高置信度峰(P < 10 − 5 ),表明在Fe 2+氧化条件下基因组甲基化程度更高。 6mA在转录起始位点(TSS)处表达下降,并且在两种氧化条件下均频繁出现在基因体中。此外,基因本体论(GO)和京都基因和基因组百科全书(KEGG)分析显示,7条KEGG通路被映射到差异甲基化基因上,大多数差异甲基化基因在氧化磷酸化和代谢途径中富集。选择了14个基因研究甲基化差异对mRNA表达的影响。除petA-1外,13个基因随着甲基化水平的增加表现出mRNA表达下降。整体而言,两种条件下6mA甲基化富集模式相似,但富集的途径有所不同。基因甲基化水平上调与表达下调的现象表明6mA的调控机制与Fe 2+和RISCs氧化途径之间存在潜在关联。
选择了曲霉,真菌的种类和酸 - 硫代杆菌,嗜酸菌和化学可营养细菌。两个器官都以有效的金属溶解化而闻名。将在包含Lunar High Land Simulant(LHS-1)的介质中生长。在培养持续时间,葡萄糖消耗和有机酸(曲霉中的柠檬酸培养物中的柠檬酸和酸 - 硫代硫酸脂肪酸氧化物培养物中的硫酸)生产将使用高性能液体色谱(HPLC)进行量化,以研究相应的Bi-Oleth-Oleth-Oleth-Olething Effericecies。电感耦合等离子体质谱法(ICP-MS)将在实验期间用于培养培养基的分析,以确定生产率。扫描电子显微镜(SEM)图像也将用于评估模拟形态的任何变化。
化石燃料的生物硫化是一种有前途的方法,可用于治疗酸油,因为它的环境友好性和摆脱顽固的有机硫化合物的能力。在这项研究中,许多类型的微生物,例如鲁otropha,赤霉菌,红oc虫,酸硫胆杆菌的铁氧化物和酸硫胆杆菌的硫代基硫酸脂蛋白,用于酸化的重型原油(硫含量为4.4%)。另外,通过向PTCC 106提供了从原油和油浓缩物中分离出的菌落。对各种官方和著名的培养基进行了显着评估,例如(PTCC 2,PTCC 105,PTCC 106(9K),PTCC 116,PTCC 116,PTCC 123,PTCC 132),无硫MG-MEDIUM,碱盐培养基和矿物质盐。发现,从微生物和SFM中选择了红oc子和酸硫胆杆菌,而SFM和培养基PTCC 105被选为分别等于47和19.74%的原油的较高脱硫效率。生物疾病取决于处理过的液体,靶向硫化合物,因为这些化合物代表了环境状态(营养素的数量和类型),以及生物营养者的类型是微生物是败血症,败血症,半疗法或无菌性的。最佳操作条件是通过使用确定的方法(例如混合速度,温度,表面活性剂剂量,OWR,酸度)设计的。即使生物工程获得的效率,此处获得的最佳效率也比以前的努力要好。生物盐是与BDS的同时过程。
TM 1890 – ALEKSANDROW BROTH 预期用途 用于从土壤样本中分离和检测钾溶解细菌。 产品摘要和说明 土壤钾补充在很大程度上依赖于化学肥料的使用,这对环境有相当大的负面影响。钾溶解细菌将土壤中的不溶性钾转化为植物可以吸收的形式。据报道,假单胞菌、伯克霍尔德菌、氧化亚铁硫杆菌、胶质芽孢杆菌、土壤芽孢杆菌、环状芽孢杆菌和类芽孢杆菌属等多种细菌会从土壤中的含钾矿物质中释放出可吸收形式的钾。据报道,钾溶解细菌对棉花、胡椒和黄瓜、高粱、小麦和苏丹草的生长有益。因此,钾溶解细菌被广泛用作生物肥料。 成分