近年来,由于粮食安全、环境恶化和气候变化的压力不断增加,对可持续农业实践的追求变得越来越紧迫。在应对这些挑战的各种策略中,通过有效利用农业废弃物来提高土壤肥力正成为一种重要的方法。农业废弃物通常被视为副产品,具有巨大的可持续肥料生产潜力,从而有助于改善土壤健康和环境可持续性。农业废弃物包括在种植、收获和加工作物过程中产生的各种物质。这包括作物残留物,如稻草、树叶和果壳,以及动物粪便和加工副产品。传统上,这些废物要么被焚烧,要么留在原地分解,这常常导致空气污染和温室气体排放等环境问题 [1,2]。
摘要 - 精确耕作对于优化资源使用和提高农作物产量以获得可持续农业至关重要。但是,诸如数据不安全感,肥料成本以及对土壤健康的考虑不足的挑战构成了实现这些目标的阻碍。为了克服这些问题,拟议的工作提出了一种新的方法,可以通过开发将物联网和区块链与温室链连接的框架来优化肥料分配的新方法。该系统由安装在温室内的物联网传感器组成,以测量土壤pH值和养分值。使用KECCAK-256,IPFS(行星间文件系统)哈希(IPFS)(行星间文件系统)将此收集的传感器数据牢固地压缩并存储。metAmask转移数据链注册和身份验证的数据。然后使用z得分归一化,标签编码和一式式编码来预处理数据,以获得精确的分析。基于深度学习的卷积神经网络(DL-CNN)用于对土壤条件进行分类并确定适当的肥料要求。通过分散的应用程序(D-App)在仪表板中查看DL-CNN模型的结果,我们开发了为消费者,现场分析师和农业组织提供实时信息。现场分析师使用信息来建立一个精确施肥的控制中心。所提出的方法达到了98.86%的分类精度,从而提高了土壤健康并为有效管理肥料提供了解决方案。
在重大健康问题之外,使用前十种常规棉农药中的一些引起了相当大的环境问题。例如,迪坎巴(Dicamba)在2024年禁止使用棉花,因为它的脱靶运动以及对非目标农作物和其他植物的损害。也已知它会对鸟类,哺乳动物,蜜蜂(幼虫),水生植物和非目标陆生植物造成不利影响。acephate(包括其降解甲基载体)对蜜蜂和有益的掠食性昆虫有剧毒,急性接触。对鸟类的急性和慢性风险,哺乳动物的慢性风险也很高。甲基动物,本身就是一种活性成分,
摘要。工业废水处理厂 (WWTP) 中的活性污泥的使用会产生污泥饼形式的副产品。污泥饼给环境带来了新的问题,因为它的堆积会导致土地变得贫瘠、破坏美观、增加微生物活性并污染水和土壤,这可能对人类和环境有害。PT X 是每天产生 80 公斤污泥饼的行业之一。根据实验室结果,X WWTP 污泥饼具有用作有机肥料的潜力。然而,将污泥饼用作有机肥料不符合肥料质量标准,也不能为植物提供最佳效果。众所周知,山羊粪便可以增加污泥饼中的有机肥料含量,符合肥料质量标准。本研究旨在寻找在污水处理厂污泥饼中添加山羊粪便的最佳配方,采用四种处理方式,即未经处理的污泥饼和添加 1.4 kg、2.1 kg 和 2.8 kg 山羊粪便。研究阶段包括原材料的准备、有机肥的生产和有机肥含量的测试。结果表明,堆肥结束时有机肥的物理和化学参数有所增加,即 pH 值(6.6)、C(22.14%)、N(3.55%)、P(4.65%)、K(0.45%)、Ca(0.52%)和 Mg(0.26)),同时含水量降低(15.40%)。在 X TWP 污泥饼中添加山羊粪便和其他添加剂组合可以满足有机肥质量标准。添加 2.1 kg 山羊粪便是增加有机肥的最佳配方。
令人兴奋的是,该团队使用遗传方法表明,小麦中相同的基因突变通过固定氮在田间条件下也可以增强定殖。这些发现代表了长期以来的野心的一个令人兴奋的突破,即使用增强的内共生伙伴关系作为跨主要农作物(包括谷物和豆类)的无机肥料的天然替代品。
关于氮气由古斯塔夫·福斯伯格(Gustaf Forsberg)和彼得·贝林(Peter Baeling)于2016年创立的氮气,氮气已迅速成为绿色农业技术中最知名的公司之一。其开创性的专利工艺Sunifix®使用氧气而不是氢来结合氮,该氮由可再生电力供电,具有高度竞争力的能源效率。这使公司的绿色氮肥Sunifer®是市场上最经济的。氮气的主要投资者包括LRF Ventures,Almi Invest Greentech和EIT InnoEnergy。硝化作用得到了欧盟的生活计划EIP Agri和瑞典能源局的支持。有关更多信息,请访问:www.nitrocapt.com
该倡议为农民提供了数据驱动的见解,这是最好的农作物,正确的肥料和植物作物疾病的检测。它有助于做出明智的决定,减少反复试验并提高产出。该系统使用CNN可靠地从叶片照片中识别疾病,减少农作物的损失和增加产量。主动性通过建议适当的作物和肥料来最大程度地利用资源的使用,从而确保可持续的农业方法。ML和DL型号,使小型农民负担得起。该项目的基于Web的接口允许用户输入土壤,天气或图像数据,并提供精确的预测和建议。“下载作为图像”功能允许用户将预测和建议作为图像文件保存,使其可用于离线访问,尤其是对于Internet连接有限的地区的农民而言。
土壤是植物生活环境中必不可少的一部分(Palansooriya等,2020),也是人类生存所需的自然资源(Zhang等,2018)。土壤环境与植物和人类的生存直接相关(Gondek等,2018),并影响农业生产(Hou等,2019)。没有土壤种植的作物,土壤的生育能力决定了农作物的生长和发育,这直接影响农作物的产量和质量。因此,有效的土壤受精可以促进农业的可持续发展并提高种植效率。在现代农业中,化肥的使用非常普遍。例如,硫酸亚铁肥料不仅可以补充植物中的铁,而且还可以促进氮和磷的吸收。由于硫酸亚铁的降低性很强,因此它也可以大大调节植物中的氧化减少过程。但是,在受精期间,某些地区
紫色玉米是一种商品,在印度尼西亚未被广泛种植。紫色玉米的营养价值高于黄色和白色玉米。紫色玉米含有花色蛋白蛋白成分,可作为预防多种疾病,例如癌症,糖尿病,胆固醇和冠状动脉疾病的抗氧化剂化合物。紫色玉米也可以用作制作额外食物的原材料。这项研究的目的是研究兔子肥料液体肥料(LOF)浓度和应用时间对紫色甜玉米生长和产量的相互作用。该研究是在2021年9月至11月在卡迪里伊斯兰大学农业学院综合实验室进行的。该阶乘实验在由2个因素组成的随机块设计中布置。第一个因素是LOF(U)的浓度,该浓度由4个级别组成,即U0 = 0 mL/植物,U1 = 20 ml/植物,U2 = 30 ml/植物,U3 = 40 ml/植物。第二个因素是兔子LOF(a)涉及2个级别的应用时间,即种植前A1 = 1周,在种植后A2 = 1周。这两个因素的组合都导致了8种治疗组合。每次处理3次。结果表明,兔子肥料的浓度与紫色甜玉米的生长和产量之间没有相互作用。LOF的浓度对COB的重量产生了显着影响,而应用时间对没有COB和甜度水平的COB重量产生了显着影响。关键字:剂量,紫色玉米,应用时间
表 3.1. 2022 年和 2023 年南达科他州布鲁金斯、米勒和海莫尔整个生长季 (GP) 收集的每月降雨量和温度数据。 ........................................................................................................... 30 表 3.2. 东部和中部 SD 种植前的土壤物理和化学特性 ........................................................................................................................... 31 表 4.1. 2022 年和 2023 年南达科他州布鲁金斯、米勒和海莫尔向日葵生长度日(基准 6.7 °C)。 ........................................................................................................... 40 表 4.2. 2022 年和 2023 年布鲁金斯不同氮肥施用率和位置下的 V-10、R-8 阶段叶片叶绿素含量(2022 年)、R-1 和 R-5 阶段叶片叶绿素含量(2023 年)、植物高度(cm)和茎直径(mm)。 ........................................................................................... 46不同氮肥施用量下向日葵 V-10 阶段叶片叶绿素含量的放置分析 Brookings 2022。 ......................................................................................... 46 表 4.4. 不同氮肥施用量下向日葵株高(cm)、茎直径(cm)的放置分析 Brookings 2023。 ............................................................................................. 47 表 4.5. 不同氮肥施用量和放置条件下 V-10、R-8 阶段(2022)的叶片叶绿素含量,R-1、R-5 阶段(2023)的叶片叶绿素含量,植物高度(cm) Miller 2022 和 Highmore 2023................ 48 表 4.6. 不同氮肥施用量和放置条件下平均 NDVI 对 Brookings 2022 和 2023 的影响。 ............................................................................................. 51表 4.8. 2022 年和 2023 年 Miller 和 Highmore 不同 N 施肥量和位置对平均 NDVI 的影响。 ........................................................................................... 52 表 4.8. 2022 年 Brookings 和 2022 年 Miller 不同 N 施肥量对平均 NDVI 的影响的放置分析。 ........................................................................... 53 表 4.9. 2022 年和 2023 年 Brookings 不同 N 施肥量和位置下向日葵的头直径(cm)、百粒重(克)、种子产量(kg ha -1 )、蛋白质浓度(g kg -1 )、油浓度(g kg -1 )和油产量(kg ha -1 )。 ............................................................................. 64 表 4.10. 2022 年 Brookings 不同 N 施肥量下向日葵的产量(kg ha -1 )和蛋白质浓度(g kg -1 )的放置分析。 ........................................................... 65穗直径(厘米)、百粒种子重量(克)、种子产量(千克/公顷)、Miller 2022 和 Highmore 2023 在不同氮肥施用量和地点下向日葵的蛋白质浓度(g kg -1 )油浓度(g kg -1 )和油产量(kg ha -1 )。 ............................................................................................................................. 66 表 4.12. 氮肥成本、葵花籽价格、经济最佳施氮量(EONR)。 ........................................................................................................................................... 67 表 4.13. Brookings 2022、Miller 2022、Brookings 2023 和 Highmore 2023 的收获后茎秆氮含量(kg ha -1 )。 ........................................................................................... 69 表 4.14. Brookings 2022 和 2023 深度(0-15 和 15-30 cm)的收获后土壤 NO 3 µg g -1 和 NH 4 µg g -1。 ......................................................................................................... 71 Miller 2022 和 Highmore 2023 深度(0-15 和 15-30 cm)处收获后土壤 NO 3 (µg g -1 ) 和 NH 4 (µg g -1 )。............................................................................. 72