7 Zero-temperature Feynman diagrams 176 7.1 Heuristic derivation 177 7.2 Developing the Feynman diagram expansion 183 7.2.1 Symmetry factors 189 7.2.2 Linked-cluster theorem 191 7.3 Feynman rules in momentum space 195 7.3.1 Relationship between energy and the S-matrix 197 7.4 Examples 199 7.4.1 Hartree–Fock energy 199 7.4.2 Exchange correlation 200 7.4.3 Electron in a scattering potential 202 7.5 The self-energy 206 7.5.1 Hartree–Fock self-energy 208 7.6 Response functions 210 7.6.1 Magnetic susceptibility of non-interacting electron gas 215 7.6.2 Derivation of the Lindhard function 218 7.7 The RPA (large- N ) electron gas 219 7.7.1 Jellium: introducing an inert positive background 221 7.7.2 Screening和血浆振荡223 7.7.3 Bardeen-Pines相互作用225 7.7.4 RPA电子气的零点能量228练习229参考232
据理查德·费曼称,是他的同班同学兼演员阿尔伯特·希布斯首次向他提出了费曼的瞬间机械组件在临床应用的可能性。希布斯建议,某些维修设备应该在将来缩小,直到从根本上说,他应该聘请一位领域专家。这个想法与费曼 1959 年的小说《楼下还有更多空间》相吻合。由于纳米机器人的尺寸可以很小,因此对于非常小的机器人来说,处理整个机器人以执行复杂且通常至关重要的任务也是必不可少的。这些纳米机器人群,既有像资源混乱一样无聊的,也有在普通环境中不受阻碍的多余机器人,如微弱的粘性物质和伪科学,在许多科幻小说中都有描述,例如《星际迷航》中的博格纳米实验和《外部极限》剧集“新品种”。
这次演讲原本是为了 1981 年在 Endicott House 举办的物理与计算会议 40 周年而准备的,所以我认为应该从 1981 年开始。当时我是加州理工学院的一名大四学生,费曼准备在 Endicott House 会议 [13] 上发表主题演讲的时候我肯定在场,那是人们第一次认真思考量子计算。我在加州理工学院的时候并没有听说过这个,事实上,直到很晚我才看到费曼的论文。但我想提一下我在加州理工学院听到的他的另一场演讲,那场演讲表明他当时正在思考物理学基础问题。费曼的演讲是关于负概率的。在演讲开始时,他解释说他一直在研究贝尔定理,该定理表明量子物理不可能是局部现实的隐变量理论。这意味着,任何对量子力学的解释要么需要非局域性,要么需要非现实性(这里的局域性意味着信息不能比光传播得更快,而现实性意味着你可以测量的东西对应于粒子的具体属性)。费曼解释说,他所做的就是仔细研究证明贝尔定理的假设,看看是否存在任何隐藏的假设。事实上,他找到了一个——假设所有概率都在 0 到 1 之间。他推断,如果概率可以小于 0 或大于 1,那么也许有办法解决 EPR 悖论,但当你计算任何你可以实际观察到的概率时,计算会将这些不切实际的概率相加,得到一个介于 0 和 1 之间的结果。这并不像乍一听那么离谱——谐振子的维格纳函数就是这样表现的,费曼对此进行了评论。他继续展示了他关于负概率的一些发现;我不太记得这部分内容了。早在 1964 年的一系列讲座中 [12],费曼就说过
Feynman代表Schrodinger量子力学的时间类似物,| ψ(t)⟩= ˆ u(t)| ψ(0)⟩用进化运算符ˆ u(t)= - i ˆ ht/ 1用路径 - 编写。
Seth Lloyd发布了Feynman关于局部量子模拟的理论的证明,这意味着少数量子位可以执行操作,这些操作只能通过经典计算机中的大量位来计算。
纳米技术近年来是一个快速发展的技术领域,为我们的日常生活带来了许多技术产品。该领域最常见的定义是由国家纳米技术计划(纳米技术计划)开发的。纳米技术被定义为一种技术,使得能够理解和控制1-100 nm范围内材料的特性(Denkbaş,2015年)。纳米技术的第一步是在1959年与美国物理学家理查德·费曼(Richard Feynman)一起迈出的,著名的“底部有很多房间”。feynman在这次演讲中,强调纳米技术领域的潜力引起了极大的兴趣。美国和世界市场的许多医疗产品包括纳米技术(Weissig等,2014)。纳米技术也与核酸有关。例如,DNA折纸是一种仓库应用,可在小注射量中进行高药物载荷(Omolo等,2018)。
1981年,在第一届麻省理工学院(MIT)计算物理学大会上,R.Feynman观察到量子系统无法被经典计算机有效模拟,并提出了量子计算机模型。