上下文或问题:未来的气候场景对可持续棉花生产提出了重大挑战。制定有效的适应策略对于减轻这些威胁至关重要。客观或研究问题:本研究评估了气候变化对不同耕作系统和氮施用率下棉质棉布产量的影响,以识别潜在的适应策略。方法:在田纳西州的杰克逊(Jackson)进行了长期的棉花场实验(39年),其中有两个耕作系统(无耕种和常规耕作)和四个氮(N)施用速率(0、33、67和101 kg ha⁻⁻)。使用两种代表性浓度途径(RCP4.5和RCP8.5)和五个全球循环模型(GCMS),用于模拟2025年至2057年的棉质棉绒产量,涵盖接近任期(2025 - 2035),中期(2036 - 2046),以及2077.207-207-207-207-207-207-207-207-207-207-结果:在所有情况下,在两个耕作系统下,氮的施用率都会增加对棉质棉绒产量产生积极影响。然而,无耕作始终超过常规耕作,特别是在RCP8.5下,表明其在不断变化的气候中的潜在益处。模型预测表明,虽然观察到初始收益率,但随着气候影响加剧,这些预期可能会随着时间而减少。在RCP4.5下,近期产量增加,但在中期和遥远的期间显示趋势下降。在RCP8.5下,尽管最初的韧性,所有模型都预测,中期和远程的产量显着下降,MRI-CGCM3模型中最明显的降低。结论:这项研究强调了自适应策略的重要性,例如无耕种在减轻气候对棉花产量的负面影响中的重要性。的含义或意义:实施无耕种实践与优化的氮管理相结合可以在未来的气候情况下提高棉花生产力,尤其是在RCP8.5
反过来,Jackdaw 开发项目是 Shearwater 枢纽长寿的关键推动因素,可实现未来的回接,以最大限度地开发国家资源基础,并为北海过渡协议的两个关键支柱的成熟提供时间。首先,北海中部 (CNS) 的电气化,Shearwater 枢纽是其中的关键部分。其次,位于圣弗格斯天然气终端的 Acorn 碳捕获和储存 (CCS) 项目预计将创建一个 CCS/氢低碳能源枢纽,包括捕获(从 2020 年代末开始)Jackdaw 和 Shearwater 二氧化碳的潜力,以及支持英国更广泛的脱碳目标。下面将详细介绍这两个关键支柱。
美国宇航局刘易斯研究中心的主要职责是研究和开发飞机和航天器的推进和动力系统。该职责比美国宇航局成立早很多年,实际上可以追溯到 1941 年,当时兰利实验室的一个小组搬到克利夫兰,建立了国家航空咨询委员会的航空发动机研究实验室,这是美国宇航局的前身。有了这样的历史背景,我们从应用的角度看待我们的大部分研究,以应用于新的或改进的推进和动力概念和系统,也就不足为奇了。正是这种观点导致了我们在本次会议上讨论的大部分研究和技术。这项研究针对的一些推进和动力概念距离应用还很遥远,有些可能被证明是不可行的。但是,除非对这些概念进行一些研究,否则我们无法发现这些概念的真正问题和局限性。确定推进概念的可行性确实是刘易斯的主要职责。在 20 世纪 40 年代和 50 年代初期,该中心的大部分活动涉及航空发动机,主要是涡轮喷气发动机及其相关部件。研究了它们在所有速度范围内的任务。这些系统、部件和任务研究的结果定期以会议的形式提交给航空工业、相关大学和军队。在过去的十年中,此类会议断断续续地持续着。这次会议是新系列会议之一,将以浓缩和总结的形式介绍我们在刘易斯活动几个领域的观点和研究成果。在 NACA 时期,刘易斯正在研究其他推进概念(除涡轮喷气发动机外),例如冲压喷气发动机、高能化学火箭和核动力航空发动机,以及任务和应用研究。一些关于核能用于涡轮喷气发动机、冲压喷气发动机和火箭的评估研究可以追溯到 1946 年。随着 1947 年中期对导弹的重视程度不断提高,刘易斯中心开始研究其他推进概念(除涡轮喷气发动机外),例如冲压喷气发动机、高能化学火箭和核动力航空发动机,以及任务和应用研究。一些关于核能用于涡轮喷气发动机、冲压喷气发动机和火箭的评估研究可以追溯到 1946 年。
第 6 章 场发射 6.1 简介 电子束在许多应用和基础研究工具中起着核心作用。例如,电子发射用于阴极射线管、X 射线管、扫描电子显微镜和透射电子显微镜。在许多此类应用中,希望获得高密度的窄电子束,且每束的能量分布紧密。所谓的电子枪广泛用于此目的,它利用热阴极的热电子发射来操作。然而,由于发射电子的热展宽,实现具有窄能量分布的电子束很困难。因此,冷阴极的场发射备受关注,但需要大的电场导致尖端表面的原子迁移,因此难以实现长时间稳定运行。碳纳米管可能为这些问题提供解决方案。事实上,碳纳米管在冷场发射方面具有许多优势:与金属和金刚石尖端相比,纳米管尖端的惰性和稳定性可以长时间运行;冷场发射的阈值电压低;工作温度低;响应时间快、功耗低、体积小。本章后面将讨论,利用纳米管优异场发射特性的原型设备已经得到展示。这些设备包括 X 射线管 [Sug01]、扫描 X 射线源 [Zha05]、平板显示器 [Cho99b] 和灯 [Cro04]。在详细介绍场发射之前,我们先介绍一下早期的实验工作,这些工作确立了碳纳米管在场发射方面的前景 [Hee95]。图 6.1 显示了测量碳纳米管薄膜场发射的实验装置。其中,碳纳米管薄膜(纳米管垂直于基底)用作电子发射器。铜网格位于纳米管薄膜上方 20 微米处,由云母片隔开。在铜网格和纳米管薄膜之间施加电压会产生一束电子,该电子束穿过铜网格,并在距离铜网格 1 厘米的电极处被检测到。 (需要注意的是,这些实验是在高真空条件下进行的,场发射装置位于真空室中,残余压力为 10 -6 托。)图 6.1 显示了这种装置的电流与电压曲线,表明正向偏置方向的电流大幅增加(发射类似于二极管:对于负电压,电流非常小)。为了验证光束确实由电子组成,光束在磁场中偏转,偏转对应于具有自由电子质量的粒子的偏转。该图的插图显示了 ( ) 2 log / IV vs 1 V − 的图,即所谓的 Fowler-Nordheim 图(更多信息请参见
我们并不了解所有能量无限高(或距离无限小)内的物理学。因此,我们所有的理论都是有效的低能(或大距离)理论(万物理论除外,如果这样的东西存在的话)。在高能量尺度 M(和短距离尺度 1 / M )下,有效理论不成立。我们想要描述光粒子(质量 mi ≪ M )及其在低能量下的相互作用,即特征动量 pi ≪ M(或等效地,在大距离 ≫ 1 / M )。为此,我们构造了一个包含光场的有效拉格朗日量。小距离 ≲ 1 / M 下的物理学会产生这些场的局部相互作用。拉格朗日量包含所有可能的算子(我们的理论的对称性允许)。维度 n + 4 的算子的系数与 1 / M n 成比例。如果 M 远大于我们感兴趣的能量,我们只能保留可重整化项(维度 4),也许还要进行一两次幂校正。有关有效场论的更多信息,请参阅教科书 [ 1 ]。
学习计划需要包括以下八 (8) 个领域中的经验,并与社会工作教育委员会 (CSWE) 和教育政策与认证标准 (EPAS) 9 项核心能力和行为相关联,这些内容可在 BA 实地手册第 19-21 页或在线 www.uni.edu/csbs/socialwork/field-instruction 中找到。某些行为可能在整个学习计划活动中多次使用,但每种行为应在整个实地体验中至少展示一次。学生在机构讲师的指导下完成学习计划,并在实地体验的第三周之前将其提交给教师联络人。学生还可以使用 IPT 系统中的机构资料来帮助完成学习计划活动。由于机构设置不同,每个学生对每个领域的重点会有所不同。在每个领域确定具体的可观察活动。通常,经验是从简单到复杂、从具体到抽象、从团队运作到(在适当情况下)独立运作的。以下经验是与每个学习领域相关的活动示例,取自各种背景。数字 (1-9) 表示活动与哪些核心能力相关,字母 (ae) 表示行为。
从技术上讲,量子场论是量子力学在场的动态系统中的应用,与基本量子力学非常相似,它涉及粒子动态系统的量化。因此,虽然量子力学处理的是具有有限自由度的机械系统,但量子场论描述的是具有无限自由度的量子系统。具体来说,本课程致力于相对论量子场论。相对论量子场论解释了粒子的存在并描述了它们之间的相互作用。因此,自然界最基本的层面是由粒子组成的这一事实可以仅仅看作是相对论量子场论的结果。后者在现代物理学中的应用领域非常广泛:从研究高能加速器中基本粒子之间的碰撞到早期宇宙的宇宙学。例如,后来产生星系等结构的原始密度涨落、暗物质的起源或黑洞辐射都是由相对论量子场论描述的。然而,量子场论也可应用于非相对论系统,特别是凝聚态物理学:超流体、超导性、量子霍尔效应……
Surveillance towers (including Integrated Fixed Towers from Elbit Systems, Remote Video Surveillance Systems fro m General Dynamics, and Autonomous Surveillance Towers fr om Anduril Industries), some of which can detect people up to 7.5 miles away Drones and sensors Biometric data collection and sharing between police agencies, border patrol, and military Social media network analysis and monitoring Digital IDs, which are often needed to access essential services, but also serve as tracking设备运动通过手机,自动化车牌读取器以及更多“风险评估”算法和工具跟踪,这些算法和工具标志着人们可能“危险”或“犯罪”