海上油气田开发需要消耗大量电力,这些电力通常由燃气轮机提供。为了缓解减排压力和日益增大的节能压力,世界各国政府多年来一直在推动油气田改革。如今,环境友好的替代电力供应方式是热点,例如传统能源与可再生能源的整合。但确定具有巨大环境和经济效益的系统仍然存在争议。本文提出了一种可持续海上油气田开发的风-氢-天然气关系 (WHNGN) 系统。结合优化模型和技术经济评价模型,建立了技术经济可行性分析的综合评价框架。除了 WHNGN 系统之外,还设计了另外两个系统进行比较,包括传统能源供应 (TES) 系统和风-天然气关系 (WNGN) 系统。以中国渤海湾某海上生产平台为例,结果表明:(i)WNGN 和 WHNGN 系统具有显著的经济效益,总投资分别减少 51.9 亿美元和 50.2 亿美元,WHNGN 系统增加利润 41.74 亿美元;(ii)WNGN 和 WHNGN 系统具有显著的环境效益,年碳排放量分别减少 1500 万千克和 4020 万千克;(iii)系统按经济效益排序为:WHNGN > WNGN > TES;(iV)WHNGN 系统在氢气和天然气销售价格较高的地区更具优势,例如中国、哈萨克斯坦、土耳其、印度、马来西亚和印度尼西亚。© 2021 作者。由 Elsevier Ltd. 出版。这是一篇根据 CC BY-NC-ND 许可协议开放获取的文章(http://creativecommons.org/licenses/by-nc-nd/4.0/)。
你好朋友。欢迎来到聚合物应用的下一个部分。在这里,我们将讨论不同领域的聚合物应用,特别是在聚合物工艺工程的宙斯盾下,特别是在纺织品的聚合物中。所以,让我们看看在此特定演讲中的特定表中要讨论的内容。我们将介绍纺织业中使用的聚合物。我们将讨论人造纤维的简短历史。除此之外,我们将讨论在这种情况下使用的各种术语和定义。我们将有一个有关纤维制造的简短渠道。那么,我们如何表征和证明我们要讨论的纺织纤维的模式?然后,我们将讨论专门用于纺织工业的人造纤维,除此之外,我们还将对高性能纤维有一个简短的前景。
电子设备会整合多种材料,不可避免地包含尖锐的特征,例如接口和角落。当设备受到热载荷和机械载荷的约束时,角落会产生巨大的应力,并且是易于启动故障的脆弱部位。本文分析了拐角处的压力场。拐角处的应力是两种奇异领域模式的线性叠加,其中一种模式比另一种模式更为单数。这两种模式的幅度由两个不同维度的应力强度因子表示。为了确定应力强度因子,我们分析了在两个载荷条件下的平流芯片结构:底物的拉伸和底物的弯曲。我们表明,在产生奇异应力领域时,平流芯片软件包的热载荷等效于底物的拉伸。我们进一步表明,较不奇异的模式可能在更单数的模式下占上风,以进行某些拉伸弯曲组合。两种压力场模式的相对显着性也随材料而变化,底物厚度比。2012 Elsevier Ltd.保留所有权利。
本报告是由美国政府某个机构资助的工作报告。美国政府或其任何机构、其雇员、承包商、分包商或其雇员均不对所披露信息、设备、产品或流程的准确性、完整性或任何第三方的使用或此类使用结果做任何明示或暗示的保证,或承担任何法律责任或义务,或表示其使用不会侵犯私有权利。本文以商品名、商标、制造商或其他方式提及任何特定商业产品、流程或服务,并不一定构成或暗示美国政府或其任何机构、其承包商或分包商对其的认可、推荐或支持。本文表达的作者的观点和意见不一定代表或反映美国政府或其任何机构的观点和意见。
摘要 全球各地的科学家、研究人员和工程师开始重新考虑通过将设备缩小到更小尺寸来消除大尺寸设备的想法。大量资金投入到开发大尺寸天线和各种其他具有复杂形状的设备中。随之而来的成本和性能有限的问题已通过日本的折纸艺术(称为折纸)得到解决。然而,很难按照折纸概念设计设备,因为需要考虑许多参数。军事、医疗和太空计划的研究和开发正在进行中。很少有项目已经完成,其中大多数处于研究阶段。相应的软件也在研究中,并且正在为折纸设备的设计而开发。材料选择和制造过程是实现完美设备的其他挑战性步骤。医疗领域有许多类型的设备可以用折纸概念进行设计。到目前为止,只制造了少数几种,这些设备在使用前也需要获得临床批准。世界各地的军事机构都在根据折纸概念开发庇护帐篷和武器。军事部门的主要重点是设计无人机和天线。使用折纸概念的最新和完成的项目是詹姆斯·韦伯太空望远镜 (JWST),由 NASA、ESA 和 CSA 设计。该望远镜是可运输的,因为它的两个主要部件,光学元件和遮阳板都是用折纸方法设计的。遮阳板和光学元件被折叠起来以适合航天器。一旦进入运行轨道,这些设备就可以再次展开。詹姆斯·韦伯太空望远镜于 2021 年 12 月 25 日搭乘阿丽亚娜 5 号火箭开始了它的外太空探索之旅。
我们研究单层Rydberg状态的直接和间接磁脱糖,以及在外部平行电和磁场中的Xenes(硅,德国烯和Stanene)的双层异质结构,垂直于单层和异质结构。我们通过使用Rytova-keldysh的数值整合来计算Rydberg States,1 S,2 S,2 S,3 S,3 S和4 S的结合能,用于直接磁铁电位的电位,用于直接磁铁的潜力,以及Rytova-keldysh和rytova-keldysh和coulombys的潜力。后者允许了解筛查在Xenes中的作用。在外部垂直电场中,Xene单层的屈曲结构导致sublatices之间的潜在差异,从而使电子和孔质量调整磁性能量和磁性能量,以及磁磁相连的同系数(DMCS)。我们报告了电力和磁场对结合能和DMC的能量贡献。通过电力和磁场直接和间接杂志的能量贡献的可调性。还表明,直接激子的DMC可以通过电场调节,并且可以通过电场调谐间接磁性脱位的DMC,并通过HBN层的数量来操纵。因此,可以通过外部电气和磁场以及HBN层的数量来控制电子设备设计的可能性。Xenes单层和异质结构中磁性excitons的结合能和DMC的计算是新颖的,可以将其与实验结果进行比较。
广度要求(选修两门,或一门加第三门深度课程) Chem 411+Lab 药物/计算化学(必须选择与神经科学相关的独立项目) Neur/Psyc 299 神经科学/心理学主题 Neur 451/452 神经科学独立研究(共需 4 个学分) Phil 219 人工智能基础 Phil 312 认知科学哲学 Neur 318 临床神经科学(先决条件:Neur 270 或 Psyc 200) Psyc 317 精神病理学与大脑(先决条件:Psyc 200) Psyc 216 感知 Psyc 327 认知过程(先决条件:Psyc 150 和 Psyc 200 或 211)
2.1 参考应用程序第一个参考应用程序 Nek5000 (C1) [1] 是一个基于谱元法 (SEM) 的流体和传热求解器,具有悠久的开发历史。在 20 世纪 90 年代中期,它是第一个可用于分布式内存计算机的代码,并于 1999 年因算法质量和持续的并行性能而获得了戈登贝尔奖。良好的扩展属性是通过将基于 SEM 的域分解为一系列不相交的谱子域来实现的,这允许将全局算子分解为一组局部执行的密集矩阵-矩阵乘法,并结合通过直接刚度求和的通信步骤。这种域分解也可用于提高模拟的可靠性,因为可以在运行过程中动态修改域分解以最小化估计的计算误差。在 EXCELLERAT 中,KTH 将致力于 Nek5000 的开发,重点关注与 WP4 服务数量相对应的多个方面,例如:使用伴随算法(内在优化方法)进行自适应网格细化、不确定性量化(数值方法、数据缩减算法)、使用加速器(移植到新架构、节点级性能工程)或后处理数据缩减(现场可视化)。它涵盖了从预处理阶段开始的整个模拟周期,其中必须生成相对复杂几何的粗六边形网格(网格划分算法)。在模拟阶段,我们将专注于非一致网格的压力预处理器(数值方法)和通信内核(系统级性能工程)。
Breadth Requirements (take two, or one plus a third depth) Chem 411+Lab Medicinal/Computational Chemistry (must choose Neuroscience-related independent project) Neur 299 Topics in Neuroscience Neur 451/452 Independent Research in Neuroscience (4 total credits required) Neur 318 Clinical Neuroscience (prerequisite: Neur 270) Phil 219 Foundations of Artificial Intelligence Phil 312 Philosophy of the认知科学PSYC 317心理病理学与大脑(先决条件:PSYC 200)PSYC 216感知PSYC 327认知过程(先决条件:PSYC 150和PSYC 211)