摘要加强胶结回填材料以回收脉管和尾矿的性能对于矿产资源和采矿废物管理的可持续发展至关重要。然而,在低成本,高废物比,低碳排放和低粘合剂消耗的实际限制下,巩固了毒性,毛孔和对具有卓越特性的水泥回填材料的采矿废物的升级,这是固有的矛盾和挑战性的。这项研究报告了一种废物到富裕途径,该途径通过纤维素纳米纤维来改善胶结的螺栓回填材料,以回收采矿废物并部分取代水泥。Mechanical compression, X-ray diffraction, thermogravimetry, mercury intrusion porosimetry, scanning electron microscopy tests, fractal quantitative analyses of microstructures, and molecular dynamics simulations were carried out to reveal the action mechanism of TEMPO-modified cellulose nanofibers on cemented gangue backfill materials.分析了节气改性纤维素纳米纤维和机械纤维素纳米纤维对胶结螺栓回填材料强度的贡献的差异。The results show a series of microscopic improvements of cellulose nanofibers on cemented gangue backfill materials, including regulating cemented gel polymerization, increasing hydration nucleation, inhibiting carbonization, densifying pore structure, enhanc- ing Ca-O connections and H bonds, and preventing C-S–H fracture along interlayer water.通过纤维素纳米纤维诱导的这种胶结材料的强度和能量吸收增强,具有最佳剂量可达到30〜50%。还发现过多的纤维素纳米纤维对这种复合材料有害,主要是通过延迟水合结晶并通过捕获空气增加孔,而尽管强度恶化,但它仍然表现出改善的变形抗性和能量吸收。
b“全球对化石燃料枯竭和相关环境恶化的担忧刺激了人们对可再生和清洁能源的探索和利用进行了大量研究。能量存储和能量转换是当今可持续和绿色能源科学中最重要的两项技术,并在日常应用中引起了极大的关注。迄今为止,大量新型纳米材料已被广泛探索用于这些与能源相关的领域,然而,每种材料都有自己的问题,限制了它们满足高性能能量存储和转换设备要求的能力。为了满足未来与能源相关的应用的高技术要求,迫切需要开发先进的功能材料。在此,本期特刊旨在涵盖原创研究成果、简短通讯和多篇评论,内容涉及先进异质结构材料的合理设计和可控合成的创新方法及其在能源相关领域(如可充电电池、超级电容器和催化等)的吸引人的应用。”
第13条根据CDR第3(2)(b)条,当定量影响的精确估计不可行时,机构必须使用代表性抽样或其他可靠的推理方法来达到该图。如果无法进行确切的估计,请参考文档,其中可以找到所应用的估计方法的详细信息。
Wꞏm -2 ꞏK -4 ṁ 质量流量 (kg s -1 ) Փ 直径 (m) ∆P 压降 (Pa) θ 出口温度阈值系数 Pe 佩克莱特数,Pe=D p ꞏu sup /α Pr 普朗特数,Pr=C p,f ∙ μ f / λ frp 球体径向坐标 下标 r 罐体径向坐标 amb 环境 Ra 瑞利数,Ra= GrꞏPr Re 颗粒雷诺数,Re= ( ρ f ꞏD p ꞏu sup )/ μ fb 罐内直径的填料床区域 R int 罐体内半径 (m) ch 装料 R mid 罐体中部半径 (m) dis 卸料 R ext 罐体外半径 (m) eff 有效值 t 时间 (s) ext 罐体外表面 T 温度 (K) f 流体 TC 入口最冷工作温度 (K) TH 最高工作温度(K) int 罐内表面 T in 流体入口温度 (K) max 最大 T out 流体出口温度 (K) out 出口 T o 参考温度 (K) p 颗粒 TA A 位置的径向温度 rad 辐射 TB B 位置的径向温度 s 固体 TC C 位置的径向温度 sf 固体到流体相 u 间隙流体速度 (ms -1 ),u = ṁ /( ρ f ꞏεꞏπꞏR 2 int ) w 壁
摘要 - 支撑连接和自动化车辆(CAV)的通信和计算服务的特征是响应时间和可靠性方面的严格要求。满足这些要求对于确保道路安全和交通优化至关重要。在车辆中托管这些服务的概念上简单解决方案增加了成本(主要是由于计算基础架构的安装和维护),并且可能会过多地排出电池电池。可以通过多访问边缘计算(MEC)来解决此类缺点,该计算包括在靠近设备的网络节点中部署计算能力(在这种情况下为车辆),以满足严格的CAV要求。但是,在哪些条件下,MEC可以支持CAV要求和哪些服务。为了阐明这个问题,我们使用众所周知的开源仿真工具,即Omnet ++,SimU5G,静脉,INET和Sumo进行了模拟活动。因此,我们能够为MEC提供CAV的现实检查,并指出MEC中必须安装的计算能力,以支持不同的服务以及单个MEC节点可以支持的车辆数量。我们发现,根据所考虑的服务,此类参数必须有很大差异。这项研究可以作为网络运营商计划未来部署MEC来支持CAV的初步基础。索引项-5G模拟; MEC;连接和自动车辆
提案请求提案:用于设计和工程服务的建筑经理/总承包商(CM/GC)的服务以及最终建造用于垃圾填埋场设备的设备存储设施的建筑管理。服务包括但不限于构造前服务:基于示意图设计文档,建筑和工程的项目成本估算和调度,以开发最终的施工文档。以及建筑管理和一般签约服务:包括所有必要的项目计划,分包招标,子合同管理,现场管理,直接工作以及随后的新建筑所必需的其他必要条件。该项目的服务采购将通过选择提案请求选择单个项目管理,建筑经理/总承包商/总承包商(CM/GC)来设计/建造服务;根据CM/GC定性以及费用和一般条件,与CM/GC提供的单个最终保证最高价格(GMP)内有关所有设计,工程,建设,建筑和建筑系统调试阶段服务的建议。选定的CM/GC将以其从示意图设计到最终施工文件的施工前服务的支付。如果该项目进入施工阶段,则预先获得所有者的批准,预先置于施工阶段,然后将其纳入“ Roll-Into”,然后将其包括在最终保证最高(施工)价格(GMP)中。目的:
France *correspondence: Prof. Dr. Juergen SIEPMANN College of Pharmacy, INSERM U1008 University of Lille, 3, rue du Professeur Laguesse, 59006 Lille, France juergen.siepmann@univ-lille.fr Abstract Different types of ibuprofen-loaded, poly (D,L lactic-co-glycolic acid) (PLGA)-based implants were prepared by 3D打印(液滴沉积建模)。网格形植入物的理论填充密度从10%到100%变化。在琼脂糖凝胶和搅拌良好的磷酸盐缓冲液pH 7.4中测量药物释放。使用重量法测量,光学显微镜,差分扫描量热法,凝胶渗透色谱和扫描电子显微镜来监测植入物的关键特性(以及暴露于释放介质时的动态变化)。有趣的是,与实验设置无关,植入物的植入物的释放相似。相比之下,填充密度100%的植入物显示释放动力学较慢,并且在琼脂糖凝胶中改变了释放曲线的形状。这些观察结果可以用聚合物丝之间的连续水相的存在(或不存在)来解释。在较低的填充密度下,这足以使该药物从单丝中释放出来。相比之下,在高填充密度下,细丝的合奏起着更大的(或多或少均匀)的聚合物矩阵,并且该药物要克服的平均扩散途径更长。关键词:PLGA;注入; 3D打印;布洛芬;肿胀;药物释放机制琼脂糖凝胶(模仿生物组织)阻碍了大量的PLGA肿胀,并延迟了最终的快速药物释放阶段的开始。对从基于PLGA的3D印刷植入物对药物释放的控制的机械理解得到了改进,可以帮助促进这种高级药物输送系统的优化。
摘要:这项研究旨在确定食品生物多样性保护(FBC)管理方面和次观之间的方面和关系,以满足学校学生在学校的营养需求。研究结果是新的,因为缺乏文献来解决有关在基础设施,设施和预算条件有限的学校中实施免费营养餐食的当前问题。这项研究的结果有望帮助克服印尼社区和政府所面临的主要问题,并改善印尼学校的学生营养。这项研究的结果提出了一个概念模型,“学校中三角形和五个支柱的粮食生物多样性保护管理方面”。这项研究是探索性的,并使用了混合方法。研究对象是实施食品生物多样性保护(FBC)的学校的教师,校长,非教学工作团队和主管,以满足学生的营养需求。根据标准依次确定样品并逐渐减少。问卷,观察表和