塑料在被丢弃后需要更长的时间才能分解或降解,对生态和环境污染造成威胁。由于最近的响应和全球关注,人们正在尝试减少、再利用和回收使用的塑料。尽管这些努力似乎对一小部分废弃塑料取得了成功,但剩余的废物要么进入垃圾填埋场,要么通过多种途径进入水生态系统(Lange 2021)。微塑料和纳米塑料的形成源于较大的塑料碎片通过各种物理、化学和生物过程的分解。塑料可以通过多种机制分解或降解,包括生物(由生物体活动引起)、非生物(由非生物过程引起)、光降解(由暴露于光引起)、热(由热引起)和机械
摘要,由于基于化石的材料引起的环境问题,从生物基础资源中开发了可持续材料。木质素是一种化学复杂的生物聚合物,存在于血管植物的木质组织中。木质素具有许多有用的特性,例如抗氧化活性,热稳定性,紫外线吸收性,刚度等。然而,木质素的固有挑战与其复杂的分子结构以及在水和常见溶剂中的溶解度差有关。一种利用木质素的一种策略是制造木质素纳米颗粒(LNP),以在水中产生胶体稳定的分散体。本论文旨在开发基于LNP的材料,这些材料可用于光子晶体和光热膜用于节能功能材料。论文的第一部分重点是阐明在LNP-Photonic Crystal(L-PC)的离心辅助组装过程中发生的现象。L-PC。在后续工作中,开发了一种改进的方法来提高L-PC的产量。研究了诸如初始木质素浓度以及稀释时间对粒径和稀释时间的影响,并研究了形成的LNP的PDI。经验模型以预测LNP的大小,并成功用于控制L-PC的颜色。此外,研究了L-PC的纳米结构。LNP-Chitosan膜和涂料并将其应用于室内热管理。将LNP含量从10到40 wt%调节。在论文的第二部分中开发了木质素吸收太阳能(光波长:250–2500 nm),基于LNP的复合膜和具有光热性能的涂层的能力。通过合并LNP,与纯壳聚糖膜相比,膜的机械强度和光热性能得到了改善。此外,通过使用LNP作为还原剂制备LNP-Silver-Chitosan(CC-AG@LNP)膜。用紫外线辅助在LNP的表面降低了银离子,并使用杂交纳米颗粒来通过铸造来制备膜。CC-AG@LNP膜表现出改善的湿势,并针对大肠杆菌表现出抗菌性能(灭菌作用> 99.9%)。总的来说,本文既有助于木质素聚集的基本见解,又有助于胶体颗粒的胶合颗粒,并展示了控制其组装并掺入具有附加功能的宏观材料中的方法。
生物膜是遵循表面的微生物群落。这些包裹在称为细胞外聚合物物质(EPS)的粘性物质中,形成了较高的多细胞结构,使微生物可以抵抗不利的环境条件,例如营养不良,干旱,极端,宿主免疫反应,以及许多其他司法干预措施(Ciofu et al.,202 al。,pai等)。生物膜上还可以在各种非生物表面上形成致病性微生物,例如在食品加工和医疗领域遇到的表面,从而使封闭的微生物持续存在,即使经过定期的清洁和消毒过程,也可能导致食物疾病的交叉抗击,又可能会造成30次疾病爆发(又有30次疾病)。作为有关食品和临床部门的非生物表面病原体生物膜的这项研究主题的编辑,我们很高兴收到和审查该领域内的一些有趣的研究文章。本社论的布里(Brie)报告了每个被接受的文章的主要发现,结论和观点。乳制品加工厂为生物膜发育提供了理想的环境,这是由于牛奶残留物富含碳水化合物,蛋白质和脂肪(Yuan等,2023)。,杆菌属。由于在耐热孢子中分化的能力,即使在巴氏杀菌后也生存(Shemesh and Ostrov,2020)。Catania等人进行的工作。因此,它们的存在对乳制品行业引起了重大关注,因为这些细菌可能会不断污染食品加工流,最终影响乳制品的安全性并导致它们的变质。证明了枯草芽孢杆菌和蜡状芽孢杆菌分离物是从加工奶酪产品中存活的热处理,很容易在常见的食物接触上形成生物膜
单电子控制的基本概念:添加单个电子之前和之后的导电岛(a)。添加单个未补偿的电子电荷会产生电场 E,这可能会阻止添加以下电子。基于单电子转移的设备:a) 单电子盒:这是一种基于单电子转移的电子设备。图 (a) 显示了概念上最简单的设备,即“单电子盒”。该设备仅由一个小岛组成,小岛与较大的电极(“电子源”)之间通过隧道屏障隔开。可以使用另一个电极(“栅极”)将外部电场施加到岛上,该电极与岛之间通过较厚的绝缘体隔开,这不允许明显的隧穿。该场改变了岛的电化学电位,从而决定了电子隧穿的条件。图 (b) 显示了特定的几何结构,其中“外部电荷” Q e = C 0 U 可以很容易地可视化,(c) 显示了“库仑阶梯”,即平均电荷 Q = -ne 对栅极电压的阶梯式依赖性,适用于几个温度值。栅极电压 U 的增加会吸引越来越多的电子进入岛。电子通过低透明度屏障的传输的离散性必然使这种增加呈阶梯状。
海洋生物膜是全球无处不在的表面相关微生物群落,由于其独特的结构和功能,引起了人们的关注。The aim of this study is to provide a comprehensive overview of the current scienti fi c understanding, with a speci fi c focus on naturally occurring bio fi lms that develop on diverse marine abiotic surfaces, including microplastics, sea fl oor sediments, subsurface particles, and submerged arti fi cial structures susceptible to biocorrosion and biofouling induced by marine bio fi LMS。本文介绍了有关海洋环境中这些表面相关微生物群落的多样性,结构,功能和动态的最新进展和发现,突出了它们的生态和生物地球化学维度,同时也是为了进一步研究海洋生物生物LMS的灵感。
*对应作者的隶属关系1 Laboratoire des Sciences du Climat et de l'Orvironnement,Cea-Cnrs-Uvsq,IPSL,IPSL,IPSL,IPSL,UniversitéParis-Saclay,91191 Gif-Sur-Yvette,France 2 Center 2 Recherche Surche sur La Compantervation,cnrs:cnrs:cnrs:usr3224,75 005法国巴黎3巴黎大学,5街托马斯·曼(Rue Thomas Mann),75013法国4个中心4个国家中心,duCinéma等人的ImageAnimée,7 bis Rue Alexandre Turpault 78390 Bois d'Arcy,France Abstract actract actract actract actract(CA)的次数替换为20世纪的福特(CA),该效果是临时的,该效率是在20世纪的第二季度,又是一张途中的照片。硝酸纤维素。随着时间的流逝,水解发生,CA的脱乙酰基化产生乙酸(AA),这是膜档案中的一种众所周知的现象,即所谓的“醋综合征”。然而,除了AA外,可能还存在其他瓦解化合物,很少有研究专门研究其定量和定性评估。质子转移反应“飞行时间”质谱仪(PTR-TOF-MS)结合了高灵敏度和高质量分辨率,用于实时检测多种挥发性有机化合物(VOC)。该技术用于评估来自20世纪下半叶的41张膜的空气组成,该薄膜显示出不同的降解水平(使用A-DStrips®:0级至1.5级排名)。检测到了100多个VOC,它们的分布因一部电影而异。AA是27个电影罐中最丰富的VOC。在其他情况下,它是N,N二甲基甲酰胺(DMF),丁醇,乙醛丙酮或甲酸。1。本研究表明,PTR-MS是实时监测的强大工具,并且通过对其VOC排放的定量和定性分析在博物馆环境中进行降解,并且可以将其用于层次群集分析分类。Keywords : cellulose acetate, VOCs, PTR-ToF-MS, movie film, vinegar syndrome Highlights - PTR-ToF-MS was used for the first time for real-time full qualitative and quantitative detection of VOCs released by 41 historical movie films on a cellulose acetate base - Around 100 different organic ions were attributed to VOCs emitted from films - Acetic acid, acetaldehyde,丙酮,丁醇,DMF,甲酸,甲醇,丙酸主导了VOC混合物组成 - 超过41膜,乙酸是27胶卷的最丰富的VOC,丁醇为6,丁醇为6,DMF,用于3张甲酸,用于3张甲酸,适用于2,2,乙醛,2,acetaldeyde,2,acte> actone for 1。引言,研究的上下文•醋酸纤维素缓解纤维素(CA)自20世纪下半叶以来已被广泛使用,作为照片和电影膜的透明基础,以取代易燃性硝酸纤维素。首先被认为是具有良好的终身期望值,它在1980年代已经意识到其保质期要短得多,并且根据气候环境的不同,在不到30年的时间里,有形退化可能会发生(1)。进行水解发生,CA的脱乙酰基化产生乙酸(AA),这是膜档案中众所周知的现象,所谓的“醋综合征”。该过程是自催化的,因为乙酸产生的速度会进一步降解。互惠和薄膜失真也可能导致增塑剂的损失。CA基础收缩率在十年内可能达到0.7%,在极端情况下最多可达到10%(2)。AA浓度在胶片卷轴中积聚并增加了膜降解水平,后者通常是
在各种天然生态系统中,细菌最常生活在梗塞的状态下,该状态在自我生产的细胞外基质中形成生物膜。由于它们对我们日常生活的不同方面的负面影响或积极影响,专门研究生物膜的研究数量正在增加。大多数研究是基于单个细菌物种形成的生物膜。这些简单的模型允许理解涉及的生物膜的机制。这同样有助于开发几种控制生物膜形成的方法。然而,这些模型并未密切模仿自然生物膜,称为生化和微生物学上异质和动态结构。出于这个原因,当前的研究更多地集中于使用复杂模型的多物种生物膜,以最好地近似自然环境。在这篇综述中,我们介绍了不同领域中多物种生物膜的可用样本,以说明财团内生活的复杂性和组织。最后,我们回顾了研究多物种生物膜的最常用的分析技术,强调了需要多尺度策略以更好地破译这种复杂的生活方式。
材料上的特性。15最近,多层材料在表面工程社区中引起了广泛的关注,复合电极的制造也广泛用于LM电极处理。这还涉及增强电极材料的表面和界面,例如,减少金属颗粒的大小,不合适的多孔或分层结构,并与各种纳米颗粒进行修改或功能化表面(例如,,金属,金属氧化物,碳材料和离子/电子导电聚合物)。16 - 19虽然一项重要的研究集中在界面模式cation在改善金属化lms的能量存储和电性能中的作用,但它在自我修复特性方面已被很大程度上忽略了。由于其出色的电绝缘层和高导热率,可以将金属氧化物连接到聚丙烯LMS的表面上,以通过蒸气沉积形成复合的绝缘培养基。该方法不仅在适度地增加了复合lms的相对介电常数,而且在显着增强了电容器核心的热有效性方面。20,21尽管热量的快速耗散是由于电容器的介电损失或自我修复而产生的,但据信复合LMS可以防止在自我控制点附近介电lm的层间粘附,从而在自我控制过程中发挥隔离功能。22,23
Giorgos Boras, Haotian Zeng, Raghavendra Juluri, Stephen Church, Huiwen Deng, Hui Jia, Anton Velychko, Chong Chen, Ziyue Yin, Mingchu Tang, David Mowbray, Patrick Parkinson, Ana M. Sanchez, Huiyun Liu Department of Electronic and Electrical Engineering, University College London, WC1 E7J,英国物理系,沃里克大学,考文垂CV4 7AL,英国物理与天文学系和曼彻斯特大学光子科学研究所,M13 9PL,英国物理与天文学系,谢菲尔德大学,英国S3 7RH,英国S3 7rh,英国王国
金属有机框架是一类多孔材料,在微电子领域显示出有希望的特性。为了达到这些材料的工业用途,通常首选气相技术,并最近引入。但是,所达到的厚度是不够的,限制了进一步的发展。在这项工作中,描述了允许使用环状配体/水暴露的数百个NM形成数百个NM的改进的气相过程。然后,通过深入的表面分析和分子动力学模拟的组合,建立了羟基缺陷在ZIF-8层中的存在和作用,以达到这种厚度。同时,这项研究揭示了该方法的固有限制:厚度生长是结合的,缺陷在晶体成熟时修复;这种缺陷修复最终导致孔窗窗口的下降下方的孔窗口的扩散半径下降,因此显然可以通过这种生长方法来限制这类材料拓扑的最大MOF厚度。