摘要: - 课程建议算法利用有关用户偏好,过去行为以及可能的其他因素(例如人口统计学或兴趣)的数据来建议相关课程。它采用了诸如协作过滤,基于内容的过滤或混合方法等技术来分析用户或课程之间的相似性并提出个性化建议。通过根据用户的反馈和互动不断提出建议,该算法旨在通过介绍与他们的兴趣和目标保持一致的课程来增强用户的学习经验。本文探讨了课程设计原理与建议系统的集成,以增强远程教育平台中的个性化学习经验。课程设计是通过将协作过滤与边缘计算模型的集成来进行的,以估计远程教育中的功能。协作过滤是通过估计功能的估计来应用于教育平台,并且为处理实施了边缘计算。随着在线学习的日益普及,越来越需要量身定制教育内容,以满足个人学习者的各种需求,偏好和技能水平。课程设计在塑造教育材料的结构和交付中起着至关重要的作用,而建议系统则利用用户数据提供个性化课程建议。通过整合这两个组件,远程教育平台可以创建量身定制的学习途径,以优化用户参与,保留和学习成果。通过向个人用户展示课程建议,进一步丰富了分析,并强调了建议系统如何利用课程设计方面来提供个性化的学习经验。
包括3个不同的功能:工作记忆,抑制性控制(思想和冲动的过滤)和认知灵活性
最小化可编程逻辑器件和专用处理器微电子器件上离散信号频率选择数字算法硬件和软件实现的硬件成本[1]。这些任务可以而且应该通过最少算术乘法运算的级联数字滤波方法和不执行算术乘法运算的多频带数字滤波(MDF)方法来解决[2],[3],[4]。最少算术乘法运算的计算级联数字滤波算法可以基于幅频特性(AFC)具有对称性的NDF、基于Walsh NDF或基于齐次和三角数字滤波器来实现[5]。没有算术乘法运算的计算MDF算法可以而且应该在低位系数的NDF基础上、在低位系数的差分数字滤波器(DDF)基础上、或在整数系数的DDF基础上实现[6],[7]。对于采样周期为 T 的 MDF 复信号 {х(nТ)},使用低通数字滤波器 (LDF) 的此类算法,仅需在 𝑛ൌ0,1,2…𝑁െ1 处添加和移位其第 n 个时间样本即可执行信号的 N 点离散傅里叶变换 (DFT) [8]。本研究的目的是比较分析离散信号的频率选择数字方法,以构建其无需算法乘法运算的算法,并确定在不执行算术乘法运算的情况下将此类方法用于离散信号的多级 DFT 的必要和充分条件 [9],[10]。该研究使用了具有最少数量的算法乘法运算的级联数字滤波算法和不执行算法乘法运算的 MDF 的计算程序 [11],[12]。此类算法的比较分析结果以及硬件和软件建模已经证明并减少了硬件
图S2。 通过通过偏振子光谱窗口过滤分子吸收的综合局部分子贡献的对数图。 线性尺度图显示为主文本中的图2E。图S2。通过通过偏振子光谱窗口过滤分子吸收的综合局部分子贡献的对数图。线性尺度图显示为主文本中的图2E。
希腊雅典国立技术大学乡村与测量工程学院摄影测量实验室,电子邮箱:maltezosev@gmail.com;cioannid@survey.ntua.gr 第三委员会,第三工作组/2 关键词:激光雷达、点云、建筑物提取、扫描线、过滤、变化检测 摘要:本研究旨在自动检测建筑物点:(a)从激光雷达点云中使用简单的过滤技术来增强每个点的几何特性,以及(b)从使用立体方法半全局匹配 (SGM) 在高分辨率彩色红外 (CIR) 数字航空影像上应用密集图像匹配提取的点云。第一步,去除植被。在 LIDAR 点云中,首先使用法线,然后使用粗糙度值,实施并评估两种不同的方法:(1)建议的扫描线平滑滤波和阈值处理,以及(2)双边滤波和阈值处理。对于 CIR 点云的情况,出于相同目的,计算归一化差异植被指数 (NDVI) 的变化。之后,使用形态学算子提取裸地并将其从其余场景中移除,以保留建筑物点。使用现有正射影像作为参考,评估在希腊北部城市地区应用每种方法提取的建筑物的结果;此外,将结果与从两个商业软件中提取的相应分类建筑物进行比较。最后,为了验证达到最佳精度的提取建筑物点的实用性和功能性,在整个场景的子区域上指示性地执行细节级别 1 (LoD 1) 的 3D 模型和 3D 建筑物变化检测过程。