因此,为了展示最坏情况下近似 SVP 的有效量子算法,只需为任何一个平均情况问题构建一个有效的量子算法即可。然而,对于 SIS 或 LWE,还没有已知的多项式(甚至是亚指数)时间量子算法。对于 DCP,Kuperberg [Kup05] 给出了一个亚指数量子算法。但 Regev [Reg02] 展示的量子约化要求 DCP 算法具有噪声容忍度,而 Kuperberg 的算法则不然。我们还要提到,在过去几年中,[CGS14、EHKS14、BS16、CDPR16、CDW17] 中已经展示了在某些参数范围内理想格的 SVP 的有效量子算法。尽管如此,展示一个针对所有格具有多项式近似因子的 SVP 的多项式(甚至是亚指数)时间量子算法仍然是公开的。
除了消除谐波失真外,有源谐波滤波器还解决了其他几个电能质量难题。我们的选择性操作模式允许您根据特定的性能水平定制功能。通过注入基波无功功率,轻松配置功率因数改进。与传统技术不同,我们的实时响应可确保无功功率有效地馈送到快速波动的负载,如焊机、起重机等。它可以减轻电压变化和闪烁。即使是三相系统中的不平衡负载,如点焊,也可以得到解决。
由于数据中的信息有限,从集合电流的离子通道门控的足够的离子通道门控的足够动力学方案是一项艰巨的任务。我们通过使用并行的贝叶斯过滤器来解决此问题,以指定隐藏的Markov模型以进行当前和荧光数据。我们通过包括不同的噪声分布来证明该算法的灵活性。当应用于具有逼真的开放通道噪声的贴片夹数据时,我们的广义Kalman滤波器的表现优于经典的Kalman滤波器和速率方程方法。衍生的概括还可以包含正交荧光数据,使无法识别的参数可识别,并将参数估计值的精度提高到数量级。通过使用贝叶斯最高信誉量,我们发现我们的方法与速率方程方法相比产生了现实的不确定性量化。此外,贝叶斯过滤器可为更广泛的数据质量提供可忽略的偏差估计。对于某些数据集,它标识了比速率方程方法更多的参数。这些结果还证明了总体上贝叶斯信誉量评估算法的有效性的力量。最后,我们表明,与速率方程方法相比,在模拟转换之前通过模拟转换或荧光数据的有限时间分辨率引起的模拟过滤引起的误差更强大。
使用在实验室设置之外记录的脑电图构建机器学习模型,需要对嘈杂的数据和随机丢失的渠道进行健全的方法。在使用稀疏的脑电图蒙太奇(1-6个频道)时,这种需求尤其重要,通常在消费级或移动脑电图设备中遇到。通常在EEG端到端训练的经典机器学习模型通常都经过设计或测试,以实现腐败的鲁棒性,尤其是针对随机缺失的渠道。 一些研究提出了使用具有缺失通道的数据的策略,但是当使用稀疏蒙太奇并且计算能力受到限制时(例如,可穿戴设备,手机),这些方法是不切实际的。 为了解决这个问题,我们提出了动态空间过滤(DSF),这是一个多头注意模块,可以在神经网络的第一层之前插入,以通过学习专注于良好的频道并忽略不良的频道来处理缺失的EEG通道。 我们在公共脑电图数据上测试了DSF,其中包含约4,000张录音,并在模拟的频道腐败和约100个私人数据集中进行了大约100张自然损坏的移动脑电图记录。 我们提出的方法在没有噪声时达到了与基线模型相同的性能,但是当存在显着的通道损坏时,优于基准的精度高达29.4%。 此外,DSF输出是可以解释的,可以实时监视频道的重要性。 这种方法有可能使脑电图分析在挑战性的环境中,因为通道腐败阻碍了大脑信号的阅读。通常在EEG端到端训练的经典机器学习模型通常都经过设计或测试,以实现腐败的鲁棒性,尤其是针对随机缺失的渠道。一些研究提出了使用具有缺失通道的数据的策略,但是当使用稀疏蒙太奇并且计算能力受到限制时(例如,可穿戴设备,手机),这些方法是不切实际的。为了解决这个问题,我们提出了动态空间过滤(DSF),这是一个多头注意模块,可以在神经网络的第一层之前插入,以通过学习专注于良好的频道并忽略不良的频道来处理缺失的EEG通道。我们在公共脑电图数据上测试了DSF,其中包含约4,000张录音,并在模拟的频道腐败和约100个私人数据集中进行了大约100张自然损坏的移动脑电图记录。我们提出的方法在没有噪声时达到了与基线模型相同的性能,但是当存在显着的通道损坏时,优于基准的精度高达29.4%。此外,DSF输出是可以解释的,可以实时监视频道的重要性。这种方法有可能使脑电图分析在挑战性的环境中,因为通道腐败阻碍了大脑信号的阅读。
摘要 — 为了提高基于稳态视觉诱发电位 (SSVEP) 的脑机接口 (BCI) 的目标识别性能,已经提出了许多空间滤波方法。现有的方法倾向于仅使用来自同一刺激的训练数据来学习某个目标的空间滤波器参数,并且它们很少考虑来自其他刺激的信息或训练过程中的体积传导问题。在本文中,我们提出了一种新的基于多目标优化的高通空间滤波方法来提高 SSVEP 检测的准确性和鲁棒性。滤波器是通过最大化训练信号和来自同一目标的单个模板之间的相关性,同时最小化来自其他目标的信号与模板之间的相关性来得出的。优化还将受到滤波器元素之和为零的约束。在两组自采集的 SSVEP 数据集(分别包含 12 个和 4 个频率)上的评估研究表明,所提方法优于 CCA、MsetCCA、SSCOR 和 TRCA 等比较方法。所提方法还在 35 名受试者记录的公开 40 类 SSVEP 基准数据集上进行了验证。实验结果证明了所提方法对提升 SSVEP 检测性能的有效性。
准确复制核酸序列对于自我复制系统至关重要。现代细胞利用能够进行动力学校对的复杂酶,将错误率降低至 10-9。相比之下,探索无酶复制 RNA 和 DNA 作为潜在前生命复制过程的实验发现错误率约为 10%。鉴于这种低内在复制保真度,分子进化自发出现的合理情景需要一种提高准确性的机制。在这里,我们研究了一种“动力学错误过滤”场景,它大大提高了产生精确核酸序列副本的可能性。该机制利用了以下观察结果:DNA 和 RNA 模板定向聚合中的初始错误可能会引发一系列连续错误并显著阻碍下游延伸。我们将这些特性纳入具有实验估计参数的数学模型中,并利用该模型探索在多大程度上可以通过动力学区分准确和错误的聚合产物。虽然限制聚合的时间窗口可以防止错误链的完成,从而产生一个全长产品池,其中的准确性更高,但这是以产量降低为代价的。我们表明,这种保真度-产量权衡可以通过在周期性变化的环境中反复复制来规避,例如在热液系统附近自然发生的温度循环。这种设置可以在其生命周期内产生长达 50 个碱基的序列的精确副本,从而促进具有催化活性的寡核苷酸的出现和维持。
摘要 — 开发基于运动相关皮层电位 (MRCP) 的脑机接口 (BMI) 的一个重要挑战是在现实环境中准确解码用户意图。然而,与其他 BMI 范例相比,由于内源性信号特性,该性能仍然不足以进行实时解码。本研究旨在从预处理技术(即频谱滤波)的角度提高 MRCP 解码性能。据我们所知,现有的 MRCP 研究对所有受试者都使用了具有固定频率带宽的频谱滤波器。因此,我们提出了一种基于受试者的分段频谱滤波 (SSSF) 方法,该方法考虑了受试者在两个不同时间截面的个人 MRCP 特征。在本研究中,MRCP 数据是在受试者进行自我启动步行的动力外骨骼环境下获取的。我们使用实验数据和公共数据集 (BNCI Horizon 2020) 对我们的方法进行了评估。使用 SSSF 的解码性能为 0.86 (± 0.09),在公共数据集上的性能为 0.73 (± 0.06),适用于所有受试者。实验结果显示,与之前方法在两个数据集上使用的固定频带相比,该方法具有统计学上显著的增强 (p < 0.01)。此外,我们还通过伪在线分析展示了成功的解码结果。因此,我们证明了所提出的 SSSF 方法可以比传统方法包含更多有意义的 MRCP 信息。
脑机接口 (BCI) 可以实现大脑与外部设备之间的直接通信。脑电图 (EEG) 因其便利性和低成本而成为 BCI 的常见输入信号。大多数对基于 EEG 的 BCI 的研究都集中在 EEG 信号的准确解码上,而忽略了它们的安全性。最近的研究表明,BCI 中的机器学习模型容易受到对抗性攻击。本文提出了基于对抗性过滤的基于 EEG 的 BCI 的逃避和后门攻击,这些攻击非常容易实现。在来自不同 BCI 范式的三个数据集上的实验证明了我们提出的攻击方法的有效性。据我们所知,这是第一项关于基于 EEG 的 BCI 对抗性过滤的研究,这引发了新的安全问题并呼吁更多关注 BCI 的安全性。
摘要 - 计划和控制机器人手机操纵的能力受到了几个问题的挑战,包括系统的先验知识以及随着不同机器人手甚至掌握实例而变化的复杂物理学。最直接的手动操纵模型之一是逆雅各布,它可以直接从所需的内对象运动映射到所需的手动执行器控制。但是,获得没有复杂手动系统模型的没有复杂手动系统模型的这种反向雅各布人通常是impeasible。我们提出了一种使用基于粒子滤波器的估计方案自我识别的逆雅各布人来控制手工操作的方法,该方案利用了非隔离的手在自我识别运动过程中维持被动稳定的掌握的能力。此方法不需要对特定手动系统的先验知识,并且可以通过小型探索动作来学习系统的逆雅各布。我们的系统紧密近似近似雅各布,可用于成功执行一系列对象的操纵任务。通过在耶鲁大学模型上进行广泛的实验,我们表明所提出的系统可以提供准确的亚毫米级精度操纵,并且基于雅各布的逆控制器可以支持高达900Hz的实时操纵控制。
摘要:将点云分离为地面和非地面测量是从机载 LiDAR(光检测和测距)数据生成数字地形模型 (DTM) 的重要步骤。然而,大多数滤波算法需要仔细设置许多复杂参数才能实现高精度。在本文中,我们提出了一种新的滤波方法,该方法只需要几个易于设置的整数和布尔参数。在所提出的方法中,反转 LiDAR 点云,然后使用刚性布料覆盖反转的表面。通过分析布料节点和相应的 LiDAR 点之间的相互作用,可以确定布料节点的位置以生成地面的近似值。最后,通过比较原始 LiDAR 点和生成的表面,可以从 LiDAR 点云中提取地面点。使用 ISPRS(国际摄影测量与遥感学会)工作组 III/3 提供的基准数据集来验证所提出的滤波方法,实验结果平均总误差为 4.58%,与大多数最先进的滤波算法相当。所提出的易于使用的滤波方法可以帮助没有太多经验的用户更轻松地在自己的应用中使用 LiDAR 数据和相关技术。