图像增强(点处理):图像负片、阈值处理、有背景和无背景的灰度切片、幂律和对数变换、对比度拉伸、直方图均衡化和直方图规范空间域图像增强(邻域处理):用于图像增强的低通和高通滤波、空间滤波基础、生成空间滤波器掩模 - 平滑和锐化空间滤波图像变换:一维 DFT、二维离散傅里叶变换及其逆变换、二维 DFT 的一些属性、沃尔什-哈达玛、离散余弦变换、哈尔变换、倾斜变换频域图像增强:频域滤波基础、平滑和锐化频域滤波器
图 1:长读 Ribo-STAMP 的实验和计算方法。(A)LR-Ribo-STAMP 实验系统概览。RPS2 与 APOBEC1 融合,以诱导核糖体-RNA 相互作用位点附近的胞嘧啶到尿嘧啶核苷酸编辑。编辑越多表示翻译越高,编辑越少表示翻译越低。(B)LR-Ribo-STAMP 计算流程概览。输入是未对齐的长读,经过对齐、读过滤、编辑检测、编辑过滤和编辑量化。编辑后的位点输出为 BED 文件。(C)编辑过滤。通过过滤常见位点和注释的 SNP,从长读 APOBEC1 专用(绿色)信号中概述编辑过滤和描绘 LR-Ribo-STAMP(金色),表示为编辑分数(编辑读/总读数)与编辑位点覆盖率之间的关系。灰色部分中的已编辑站点表示过滤掉的读取数少于 20 的站点。
图。4:主题1(S1)和股直肌的EMG预处理示例:(a)原始EMG,(b)DC去除,(c)频谱信号,(d)Butterworth高通滤波,(e)Butterworth低通滤波,(f)
1。预先对准质量控制2。对齐读与基因组3。分配后过滤4。分配后质量控制5。峰(可访问区域)调用6。评估以FRIP评分(与CHIP-SEQ相同)7。峰值的黑名单过滤(与chip-seq相同)
过滤以增强信号,并进行疾病鉴定的分类。2。用于过滤ECG数据的常规神经网络Jon Son等人,使用常规网络进行ECG数据过滤国际会议。过滤嘈杂的心电图信号已通过常规神经网络有效完成。通过对嘈杂和清洁的信号进行培训,这些网络具有降级和提高ECG数据质量的能力。熟练的网络能够有效消除人工制品并提高信号质量,从而促进疾病识别。3。ECG中的细分和边缘检测信号Zhang等,《成像与健康信息学杂志》。 分割技术对于获得特定的ECG信号组件(例如P波,T波和QRS复合物)至关重要。 使用边缘检测方法,可以找到分段信号中的边界和特征,从而可以进行更彻底的分析和提取。 心脏是身体的重要器官,心脏病的识别和诊断至关重要ECG中的细分和边缘检测信号Zhang等,《成像与健康信息学杂志》。分割技术对于获得特定的ECG信号组件(例如P波,T波和QRS复合物)至关重要。使用边缘检测方法,可以找到分段信号中的边界和特征,从而可以进行更彻底的分析和提取。心脏是身体的重要器官,心脏病的识别和诊断至关重要
摘要:数字全息显微镜(DHM)是一种广泛应用于生物、微电子和医学研究的3D成像技术。然而,3D成像过程中产生的噪声会影响医疗诊断的准确性。针对这一问题,提出了几种频域滤波算法。然而,所提出的滤波算法有一个局限性,即只有在直流(DC)频谱和边带之间的距离足够远时才能应用。针对这些限制,在提出的滤波算法中,HiVA算法和深度学习算法可以通过区分噪声和物体的详细信息来有效滤波,并且可用于实现与直流频谱和边带之间的距离无关的滤波。本文提出了一种深度学习技术与传统图像处理方法相结合的方法,旨在利用改进的去噪扩散概率模型(IDDPM)算法来降低3D轮廓成像中的噪声。
本章的较早版本由出版商出版,其标题是由出版商:公司化身份≠数字身份:在社交媒体上进行算法过滤和自我公司化演示的商业化。现在已纠正如下:公司身份≠数字身份:社交媒体上的算法过滤和自我演示的商业化。
等效电路模型 (ECM)、电化学模型和经验退化模型 (EDM) 是常用的 SOH 估算模型。基于 ECM 的方法不研究电池内部复杂的物理化学反应过程,而是基于电路模型,采用滤波算法进行参数辨识,并更新模型参数进行 SOH 估算。例如,余 [3] 采用递归最小二乘 (RLS) 法辨识 ECM 的参数,然后采用自适应 H∞ 滤波算法估计 SOH。徐 [4] 也采用 RLS 辨识参数,然后估算 SOH。基于模型的方法虽然简单、计算成本低,但自适应性较差,且估算结果更多地依赖于参数辨识和滤波算法的有效性。