硝化和反硝化生物过程用于去除废水处理中的氮,可提高出水水质,从而减少接收介质中的硝化和随后的氧气消耗;进一步将输送到沿海地区的氮降低到防止沿海水体富营养化的水平[1]。硝化是一个自养需氧过程,通过两个连续的反应将铵转化为硝酸盐:NH 4 + NO 2 – NO 3 –。在铵氧化的第一步中,铵被铵氧化细菌转化为亚硝酸盐,在第二步中,亚硝酸盐被亚硝酸盐氧化细菌转化为硝酸盐。众所周知,硝化生物的比例随着废水 C/N 比的增加而减少。反硝化是一种异养缺氧过程,通过反硝化生物体将硝酸盐转化为气态氮,反应顺序如下:NO 3 – NO 2 – NO N 2 O N 2 [2]。在废水处理中,硝化和反硝化通常分两个步骤进行,因为这两个过程的环境条件不同。废水的生物处理需要培养专门的细菌种群,这些细菌种群可通过固定化等工程技术来强化和加速。事实上,生物过滤器相对于活性污泥的主要优势在于其致密性和在废水生物处理中的效率 [3]。通常,生物膜被描述为基质包裹的微生物,它们粘附在表面和/或彼此上,产生一个动态环境,其中组成微生物细胞似乎达到体内平衡,并被最佳地组织起来以利用所有可用的营养物质。尽管有相当多的综合评论涵盖了生物膜特征和生物膜形成 [3],但它们通常不太强调生物物理原理在生物膜中的作用 [4]。在本研究中,我们根据最近的技术和理论进展重新审视膜催化生物物理模型,以及如何利用它们来强调膜介导硝化和反硝化的细节。我们研究了氮浓度在膜催化中可能造成的影响,并将注意力集中在用于确定分配常数的技术上。
在饮用水生产过程中使用快速砂过滤(RSF),用于去除颗粒,可能有害的微生物,有机物质和无机化合物,例如铁,锰,铵和甲烷。但是,RSF也可用于去除某些有机微污染物(OPM)。在这项研究中,可以通过生物增强来刺激填充全尺度RSF的沙子的柱子中的拆卸(即用另一个RSF的沙子接种RSF和/或生物刺激(即添加刺激微生物生长的营养素,维生素和微量元素)。结果表明,柱中的PFOA,卡马西平,1-H苯并二唑,苯并二氮酸酯和二氨二醇的去除量很低(<20%)。普萘洛尔和双氯芬酸的去除率更高(50 - 60%),可能通过吸附过程发生普萘洛尔去除,而对于双氯芬酸,尚不清楚去除是否是物理化学和生物学培训的组合。此外,生物学和生物刺激导致38天后加巴喷蛋白和美托洛尔的99%去除,孵育52天后去除99%。没有生物刺激的生物仪柱显示52天后加巴喷丁和美托洛尔的去除率为99%,在80天后进行了Acesulfame。相比之下,非生物仪的柱未去除加巴喷丁,去除<40%的美托洛尔,仅在孵育80天后才显示出99%的丙硫酸含量。去除这些OMP与铵氧化和氨氧化细菌的绝对丰度负相关。16S rRNA基因测序表明,丙硫酸含量,加巴喷丁和美托洛尔的抗粉化与特定细菌属的相对丰度呈正相关,这些属的物种含有异养和有氧或有氧或硝化的代谢。这些结果表明,RSF的生物提升可以成功地去除,在这种情况下,生物刺激可以加速这种去除。
Armin Reimers,1 Ala Bouhanguel,2 Erik Greve,1 MortenMoéller,1 Lena Marie Saure,1SoérenKaps,1 Lasse Wegner,3 Ali Shaygan Nia,4 Xinliang Feng,4 Xinliang Feng,4 Fabian Sch€utt,4基尔大学(Kaiserstraße)2,24143德国基尔2号2 Imt-Atlantique Gepea umr CNRS 6144,4 Rue Alfred Castler BP 20722,44307 Nantes Cedex 3,法国3,法国3 Intornition for Inganic Chemistic for Inganigic Chiels,Kiel University,Kiel University,Kiel University,Max-Eythany Kiel-Endranany Kiel 2 241181181181181181 19德累斯顿(CFAED)和化学与食品化学系,技术大学德累斯顿,德累斯顿,德累斯顿,德累斯顿5铅接触 *通信:fas@tf.uni-kiel.de(F.S.),ra@tf.uni-kiel.de(R.A.)https://doi.org/10.1016/j.device.2023.100098
从设计角度来看,获得可变滤波器的可能性取决于多层涂层的光谱特性与某些层(如果不是全部)厚度的依赖关系。在由两个金属镜形成的法布里-珀罗滤波器的特定情况下,腔层厚度的简单变化会使其中心波长发生偏移。这种简单的结构具有自然提供宽抑制带的优势,但不足以提供尖锐的过渡带通,并导致高吸收损耗。为了改善最后一点,一种解决方案是使用所谓的感应透射滤波器方法,其中金属层放置在介电法布里-珀罗滤波器腔内电场分布最小处 [2-4]。然而,生产具有任意指定抑制、宽度和锐度特性的滤波器的唯一方法是使用标准的全介电方法,该方法由多腔法布里-珀罗结构与附加介电短波长和长波长通断滤波器相关联形成。在这种情况下,所有层的厚度必须通过一个公共因子进行调整,从而产生比例的波长偏移,以产生可变滤波器[5,6]。
劳动分裂(DOL)是昆虫社会的一个特征,在该特征通常由专业人士执行。内部工人专注于育雏或巢穴护理,而其他工人则通过在外面觅食来冒险。理论提出,在面对与任务相关的刺激的情况下,工人有不同的阈值来执行某些任务,从而导致专业化并因此是DOL。工人在对与任务相关的提示的响应中的反应有所不同,而不是他们如何看待此类信息。在这里,我们检验了以下假设:DOL源于工人的效率不同以检测特定任务的刺激。我们使用转录组学来测量护士和大脑的mRNA表达水平,以及蚂蚁temnothorax longispinosus的觅食者。与大脑相比,我们发现在天线中的行为表型之间差异表达的七倍。此外,所有气味受体的一半是差异表达的,在护士触角中上调了9- exon基因家族。护士和觅食者显然在对嗅觉环境和与任务相关的信号的看法上有所不同。我们的研究支持了以下假设:触角感觉过滤器倾向于专门从事特定任务。
抽象的植物脱位是处理废水的最广泛使用的技术之一,这要归功于其设计的特定特征。这项研究的主要目的是使用大植物泻湖系统从Nouakchott的一次DIS Trict处理家庭废水。在治疗前后测量了几个物理化学参数。记录了生化氧需求(BOD 5),化学氧需求(COD)和悬浮固体(SS)的平均减排率,其逐渐可接受的值为26.57%,28.60%和59.45%。氮和磷酸正磷酸(P-PO 4)的治疗效率通常很低。通常,我们的结果表明,这种自然泻湖可以达到有机污染物的良好纯化效率,这表明净化植物在减少有机和颗粒物污染物载荷中的作用至关重要。以及实验设置中使用的各种底物的作用。
摘要背景:由于缺乏对生物过滤反应器中污染物去除过程和细菌群落动态的了解,因此值得研究。本综述探讨了生物过滤过程、常用的生物过滤器类型、细菌群落动态和生物过滤器中的污染物去除机制。方法:本综述使用了 Scopus、EBSCO 和 ProQuest 上发表的先前研究的数据,这些研究分为生物过滤过程、生物过滤器类型、细菌群落动态和污染物去除机制等参数。对数据进行了叙述、表格分析和综述。结果:在生物过滤反应器中,微生物覆盖介质,使污染物流过缝隙并接触生物膜层。随着生物膜变厚,粘附性减弱,从而产生新的菌落。沉床生物过滤器、滴滤器和填料塔曝气和气化系统可有效去除水生环境中的营养物质。生物过滤器细菌群落按过滤层深度分类,上层为快速生长、不太专业的群落,底层为更专业的群落。污染物的生物降解取决于多种因素,如营养物质的有效性、氧浓度、pH 值、污染物的生物利用度以及生物质的物理和化学特性。结论:生物滤池反应器利用微生物覆盖介质,使污染物流过缝隙并接触降解有机化合物的生物膜层。淹没床生物过滤器、滴滤池和填料柱曝气系统可以有效去除污染物。生物滤池细菌群落按滤层深度分类,上层为快速生长、专业化程度较低的群落,底层为专业化程度较高的群落。关键词:废水、细菌、生物膜、环境污染物、营养物质引用:Muliyadi M、Purwanto P、Sumiyati S、Hadiyanto H、Sudarno S、Budiyono B 等。生物过滤器中的细菌群落动态和污染物去除机制:文献综述。环境健康工程与管理杂志 2024; 11(4): 477-492 doi: 10.34172/EHEM.2024.47 。
生物过滤是一种低成本的低能技术,它采用了多孔培养基的生物活化床来减少源水中溶解有机物(DOM)池的可生物降解部分,从而导致饮用水的产生。在生物滤池内不同床深度的微生物群落在降解和去除溶解有机碳(DOC)中起着至关重要的作用,最终影响了其性能。然而,居住在不同生物滤池深度的微生物群落组成与它们对各种DOC馏分的使用之间的关系仍然很少。为了解决这一知识差距,我们进行了一项实验研究,其中从上部(即前10厘米)和下部(即底部10厘米)的小型群落进行了30厘米长的实验室尺度生物滤器的部分。然后使用与生物滤器进水量相同的源水单独孵育10天。我们的研究表明,与顶级微生物社区相比,底部微生物群落的多样性较低,但其成员之间具有更高程度的互连网络。此外,我们在微生物群落的组成和网络结构之间建立了直接相关性,以及它们在DOM池中使用各种DOM化合物的能力。有趣的是,尽管在孵化开始时,与顶级社区相比,底部微生物社区仅占总细胞丰度的20%,但它使用了,因此从DOM池中删除了比顶级社区多的总DOC约60%。虽然两个群落都迅速利用了不稳定的碳分数,例如低分子 - 重量中性,但使用更多难治性的碳馏分,例如高分子重量腐殖质的腐殖质,平均分子量比CA的平均分子量更高。1451 g/mol,是底部微生物群落独有的。通过采用捕获微生物多样性的技术(即流式细胞术和16S rRNA扩增子测序),并考虑DOM的复杂性(即LC - OCD),我们的研究提供了微生物社区结构如何影响微生物介导的工程生产的重要过程。最后,我们的发现可以通过工程干预措施来改善生物滤器性能,从而塑造生物滤器微生物群落的组成,并增强其对DOM的利用率和去除,最尤其是更经典的谦卑和耐用性DOM -DOM AFTER。
Kirk Paul Lafler,sasNerd 摘要 电子表格已成为有史以来最流行、最成功的数据工具。据估计,全球有超过 7.5 亿 Excel 用户。电子表格的简单性和易用性是 Excel 在全球范围内增长和广泛使用的两个原因。其他增值功能也有助于在越来越多的用户中扩大电子表格的实用性,包括其协作功能、可自定义、处理数据的能力、数据可视化技术的应用、移动设备使用、重复任务的自动化、与其他软件的集成、数据分析和使用自动过滤器的过滤功能。最后一个增值功能,即使用自动过滤器进行过滤,是本文的主题。将说明一个示例应用程序,该应用程序使用内置自动过滤器或过滤器创建自定义 Excel 电子表格,这些过滤器使用户能够从文本、数字或日期值列表中进行选择,以快速找到感兴趣的数据,使用 SAS® 输出交付系统 (ODS) Excel 目标和 REPORT 过程。关键词:sas、excel、excel 电子表格、ods、ods excel、proc 报告、自动过滤器、过滤器简介在 Excel 电子表格中使用自定义自动过滤器使用户能够查找、显示或隐藏文本、数字和/或日期值。用户可以使用 SAS 输出交付系统 (ODS) Excel 目标从任何 SAS 数据集构建带有内置自动过滤器的自定义 Excel 电子表格。生成的 Excel 电子表格中,一列、两列或多列或变量可用作自动过滤器。过滤第一列后,用户可以通过过滤两列或更多列来优化过滤结果。本文介绍了使用 SAS® 输出交付系统 (ODS) Excel 目标和 REPORT 过程构建带有内置自动过滤器的自定义 Excel 电子表格的分步方法。示例中使用的数据集创建了一个 SAS 数据集,其中包含位于圣地亚哥市中心地区的热门餐馆。该数据集包含 87 个观测值(或餐厅)和 17 个变量,如下所示。
抽象军团菌是饮用水分布和前提铅系统中重要的机会病原体。这项研究研究了颗粒活性碳(GAC)过滤过程中肺炎军团菌的潜在生长,考虑到它们在滤床中的生存状态。使用实验室规模的生物活性GAC柱,并以不同的生存能力(可培养,可行但不可培养(VBNC)和死细胞)尖刺肺炎。监测废水中的基因浓度70天。在与可培养细胞尖刺的柱中,即使在运行70天后,在废水中也检测到高水平的肺炎。然而,当引入VBNC细胞时,废水中的肺炎乳杆菌的水平明显低,尽管仍然高于死细胞峰值的色谱柱。这表明肺炎乳杆菌的生长潜力受到进水中其生存状态的影响。这些发现强调了军团菌再生的生态潜力,并强调了在GAC治疗期间监测其行为的必要性,尤其是当涉及臭氧期间不完全失活时。